CCS C Compiler Manual
PCB, PCM, PCH, and PCD

A% 5% .
A)\

March 2019

ing

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2019

Table of Contents

OVEIVIBW ...ttt etttk e e et e et e e e e 4o e e Rt et e ARt e e e E et et enR e e e e e hn e e n e ee e e R nnr e n e 20
PCB, PCM, PCH QN0 PCD ..ottt ettt e e e ettt e e e e e skttt e e e e e e aabbba e e e e e e e nnbbneeaeeaaanes 20
INSEAIBLION ...ttt st e e et et e e et 21
T g TTor= TSN o o To] o SO TSRO PUPPPPPRRPIR 21
(D= o (o] (=T OO PT PR 22
FIIE FOMMALS ...ttt ese e e n e e e s e e e n et n e e 22
Invoking the Command LiNe COMPIIETc.uiiiiiiiiiiee ettt e e 24
L= o PPN 26
EITOr TADS. ...ttt b e e bttt e et 26
SHOE OUE WINTOWS ...ttt e ettt et b e e e bbbt e st et e e bbb e e e b et e sbe e e e eannees 26
o) (o PSP PR PPN PRI 26
DEDUGGING WINTOWS ...ttt ettt et e e e st e e s ettt e et bt e e aabb e e e e mbe e e e bbe e e e bb e e e sabeeeaaseeeeenn 26
STATUS B ... e 27
OULPUL MESSBGES ...ttt e e e e s s bbb e e e e s s e bbb e e e e e e s s e s e e e e e e s sb b b e e e e e e s s abaaeeaeeas

Program Syntax..
Comment..................
Trigraph Sequences.....
Multiple Project Files
Multiple Compilation Units

FUIT EXAMPIE PIOGIAIM ...ttt ettt ettt e ettt e ettt e ettt e e ettt e nb et e e abneeeens 31
STALEIMENTS ...t e e e s et e e e e e e s bbb et e e e s et e e e e e e e e e s b b e et e e e e e b e b e e e e e e e a b e e e e e e s s reneea 33
T ettt ettt e et et ettt e e e e e Eateeeee e e e R hEeteeeeeaaanttteeeeee e e aEeteeeeeeeanEeEeeeeee e e nEeteeeeeeeannnbeteeeeeaannraeeeeaens 33
11T P TR PR PP PP 34
TO-WHIIE. ..ttt bRttt e e 35
L0 PSPPSR PR PPRPTRPPP 35
SWITCR . e ae e 35
L] (U 0 PO PP PP O PP PP PP PP PP PP PR PTPPPTNN 36
o 36
(= o 1= O TP P PSR OUPPPPPI 37
DIBAK ... e 37
(o101 1141V PO PP PP PR POPRPOOY 37
[o] ST TP T OO PTPPPPPR RPNt 38
L5310 38
oo (=11 (o] oL PSP PP PU PR OPPPPOPPPIN 39
[0 1] £=T g1 TP 39

[1= 11T £SO PPEPRN 39

(O 1] =1 (o] £ TP PPRPPP 40
(@1 o (o g (=Tt =To (=T o Tod PR PP OPRPPPP 41
Data DEfINILIONS ..ottt ettt et st 42
2 F TS (o Y] =T TR T O UPUPPRPTON 42
TYPE QUATHTIETS ...ttt ettt e e bt e e et et e e st bt e e eab e e sttt e e enbn e e e st e e e abneeeannee

Enumerated Types........

Structures and Unions

1177 01=T0 (=) ST PTT O PUPPPPP RPN 46
NON-RAM Data DEFINITIONScuviiiiiiiiiiiti ettt ettt e e et esaiee e e 47
Using Program MemOry fOF DALAcccuuiiiiiiiiiiiieeiii ettt 48
NAMEA REGISTEIS ..ttt ettt ettt ettt h bt e et bt e oo bb e e e aa bt e e e bb et e eabb e e e sabe e e ekt e e e e nb e e e sabeeeenbeeeeann 50
FUNCHON DEFINIION ...ttt ettt r e s e et e e r e s e e ne e e e e s e e neennnas 51
(@)=t g o= o =T oW1 (o1 o] o TP PPR PRSP 52
REEIENCE PArGMELEIS ...t ettt e et e s e e 52
DEfaUIt PArAMELEISeiiiiiiieieie ettt s bt e ettt e e et e st e s niee e e 53
Variable ArgUMENT LISESooiiiiiiiiii ittt e e e e e s e e 53
FUNCHONEAI OVEIVIEW ...ttt ne et s e s e et e e et e s e e n e e e e e s e e neeannes 55
[TP PO TP P PPPPPPPPPON 55
AADIC .ot e e e oo b e e et e e 4o AR b E ettt oo e oAb e et et e e e e R R Rt e e e e e e e e nbn et et e e e aanbe e e e e eaa e 56
ANAIOG COMPATALONeiiiiiie ettt e e ettt e e ehb et e e e bt e e e e be e e e esb e et e aabe e e e bbb e e et e e e nabeeesineeeeas 58
(07 A I = 11 L PPN 59
L PPN 64
(OfeTe [l o (o) 11 O O P TR TP PPRPTRPPR 65
CONFIGUIALION IMEBIMIOTY ...ttt ettt et e ekt e e et bt e e e bt e e e aa bt e e e bb e e e e bb e e e ambb e e e anbe e e e anbeeesnbeeeeanneeas 66
(01 L O PO PO U TS U PP PP PROPRPON 67
DIAC ettt bR oAb b bt k£ oAb b £ £t e b £ oAbt R £ e b e R £ oAb e R £ e R e e R e e bt R e e bt Ee e b e ehe ekt eb e e beenrente et 68
(D= =l =TT o] (o] 1 1 TP TP PP PPRPTN 69
Dl 71
D A 72
Data SIGNal MOGUIALOT ...ttt e e et e et e e e e sttt e e e e e e e anbn b e e e e e e e sannbereeaeeaaanes 73
Extended RAM........ .74
L] g T U\ =T o] oY PO PP OUPUPPUPTON 75
GENETAl PUIPOSE 1O ...ttt e e bt e ettt e et e et e st e e ees 75
g o U L OF=T o 1F [TP PR P PP UPPRPTN 76
(L] 11 T U IO SO P TR PRSP 77

g 1=Tg g Fo @ T[T (o) PPN 78

L1110 TR P PPN 80
[VA o] | =T =T B = (=t PR U OO P PPRPTN 81
Output COMPATE/PWIM OVEIVIEWeieiiiiieiee ettt ea e e e e ettt e e e e e st et e e e e e s aabb b et et e e e aaanbba e e e e e e e assbeeeeaeesanbsbeeaeeas 82
MOLOF CONEIOI PWIM ...ttt ettt e et e st e ekt e e et e e s et e s nieeee e 83
PIMPIEPMP ...ttt btttk h et b bRtttk £ Rt E R e Rt Rt R R bt bt nn et et r e nre e 84
POWET PWIM ... e 85
Program EEPROM ..ottt et e e e e et e e e e e e e e e e n e e e e e e e e e 87
P P 89
(o] =1 SOOI 90
R SV AN 1@ ST PPRPTN 91
2 I ST T PO TS TP TP PP RO PP PTTPROPTRTN 92
L O T T TP OO TP O TP PP PR PP PR PTTPROPTRINt 93
5T o OO P PR PP PPPPPP 95
Timers
Timero0....
Timerl....
Timer2....
Timer3....
Timer4
Timer5
TimerA
TimerB
L6 = TP OO P PP PPPPPPPPPN
VORAGE REFEIEINCE.eii ettt a bt e et e e e bt e e st e e e e nbe e e e enb e e e snbeeeeanneeas 107
WDT OF WALCH DOG TIMIET ...ttt ettt e ettt e e ab e e e bt e e e sbb e e e sabe e e e bbb e e e enbeeesnbeeeeanneeas 107
SETEAM 1O e e e n e e 109
PIEPIOCESSON ... ettt oottt e e e oottt e e e e ettt e e e e e et e e e e e e e e e e e e e e e e e e e n e 112
B 1o (0| (ST, TP O PP TSP TSP OUPPPPPI 112
- L1010 L= OO PP TP OUPPPPPI 112
#asm, HENAASIM, HASIM @SISiiiiiiiiiiiii et 113
Fz2 oT=T a1 o [0 o - PSP U PP UOUPPPPPTON 124
FEDANKX ... 124
FEDANKY ..ot e et e et e e 125
2 o TSP TS PO PP T P PR PR URPTRPON 125
I o 1o o T | PRSP 126

20 (T TP TSSO TP TSP O PSP PR PR URPTROON 129
F22 022 1SN 130

[0 (= O T T TP PP PP PO PP R PPPPPPUPRPTON 130
FHABTING e e e e 131
o [T 0= 1 o T PSPPSR PP 132
FHABVICE ..ottt e e 133
B (51 (o PP RPOPPRPPPI 136
H#if Helse Helif HENif.......coi 136

#ifdef #ifndef #else #endif

#ignore_warnings

T aToTolaa (o] o 1 (o]0 = I PSSP OUPRRRPI

FHNCIUAR. ... ettt a bttt e et ra et ettt e e e e s 146
FHNIINE ettt ettt e es 147
101D GO TP O PP PP PP PP PP RPPPPPPRPPI 147
E2 10 e (<1 1= T | PP RPOUPRPPPI 154
210 o [[o] o Y- 1 PP OUPRRPPI 155
B 12 LSOO OUPRPRPI 156
FHIST < e e e 156
1101 TP O PP PP PT PP PUPPPPPI 157
FHIOCALE ...ttt e et e e eas 157
FEMOTUIE ...ttt h oot oo a e e a et e oottt e e e r e e s 158
FHNOLIST .o e e 159
2o Tor ST TP TP PO P TR PP PRPTPP 159
22 0] oL ST TSP PP UOPUPPPPTON 160
F22 (o TP PP TPUU PPN 160
FEDIN_SEIBC. ..ottt e et es 162
B o 1o « TP PP PT PP OUPPPPPI 167

N o 1 0 PP PPRPTRN 168
1] H PP PPRPTN 168
2 o] = To | 1 1T D O PP P PP PP PPPPPPPPPPPPNt 169
22 01T] 1117 TP OO PPPPRN 169
E22 o] 0] 1L PP OUPRPPPI 170
2 1=To1] 1Y PSPPSR PPN 171
E2 (=15]=T A= PP PP 171
22 0] 1 1 PPN 172
FESEPANALEeii ittt e e e e e e e e e e e e s e e e e e e e s a e r e e e e 173
FESEITAIIZE ... et 174
2 L] PO OP PP PPRRPR 176
L1 = 177
2 0o [PO P PR PPRRPR 177
22877 ¢ L= TP P PPTU PPN

__unicode__
#use capture
#use_delay....

#use dynamic_memory

FEUSE FAST H0. ..ttt ettt 186
FEUSE FIXEO_I0 ..ttt 186
FEUSE 12C ettt a e a et e ettt e e e e s 187
E T Yl o] o] 1T PP OUPRRPPI 190
FEUSE PWIMI() -ttt ettt ettt ettt ettt ettt ettt e ekttt e a et a4k b et o4 kbt e o4 a ke £ e 4R b et e e ARkt e e oA R b e e e e A b bt e e eREe e e e bt e e e e nb e e e enbeeeeannreas 190
FHUSE IS232 ...ttt e e e e e 192
USE TOS .ttt ettt ettt e bt e e h e e e et e e e b b e e e s R £ e e b b e e h e e b e £ e e b bt e e e b b e e e s b et e s b e e e e e e s b an e e eaane 196
E T Y] o TP TP PP PRSP PP OUPPPPPI 197
FEUSE SEANTAIT_ID ... ee ettt a ettt e ettt et e e ees 199
E T Y= (1001 ST TP PP PT PP OUPPPPPI 200
Fi VRS (01U o] o] o - To PSP OO OUUPPPPTNN 201
F22TT= 1 01T o To T PSP PP UOPUPPPPTON 202
2o (o T TP TP PP OO TP PUPRPTPPI 203
Eo 2= (oY (oot I - 12 BT O PP TP PTRPOUPPPPPI 204
FZEIO _TIM e 205
BUII-IN FUNCHIONS ...ttt e e e s e e n e e e e sae e e n e e nne e e e e nnne e 206

= Lo S - L0] (O TP PP PPRPPORONt 209

Lo (oo (o] a T=T@ IF=To (o320 s [o] s T=T () B Vo (o3 o [0 s 1= 32 (3 1S PR PPRPPPROY 209
F= Lo [(= To [P TP OO PPRPPOROIt 210
F= Lo (o) =110 Y (OO PP OUPPPOPPRN 211
F= Lo o 41 (=T O SO P R OUPPPOPPRN 212
FEET=] () TSP PT P OUPPOPPRN 212
= Lo LT () TP OUT PP PPRPPURONY 213
atof() atofd8() aAtOfBA() SLrEOFAB() ..eeeiiureiiiiiie i

atoi() atol() atoi32() atol32() atoi48() atoi64().....
at_clear_interrupts()
at_disable_interrupts()

at_enable_interrupts()

E Lo L= o= o1 LU (=T (O T OO TP T PP TP PSP OUPPPPPPRN 219
at_get._ MISSING_PUISE_AEIAY() .eeeureieiiiiieiitie ettt e s 220
E Lo (= ol o T=T o [TR O P T PP TSP PP PP OUPPPPPPPN 221
Lo (< Al o] Fo T R o010 o1 (=1 () I OO OU PR OPRRN 221
E Lo (< Al (1T] [V o] o () OO OUPPUPPP 222
E Lo (< Y= Al o To 01 () PP PR OUPPUPPRN 223
F Lo = Y=l o Jo oL =T (o () T TP P O PP PSP OUPPPPPPPN 223
at_get_status()

E L L1 G 0] o A= Tot V=T (O T T S O PP PP PP OUPPPPPPPN 225
AL ST COMPAIE_TIME() uteeeeiittie et ettt ettt ettt e e h e e et e e e hb et e e aa bt e e aabb e e e enbb e e e aab e e e e bbeeeebbeeesnbeeeaanneaeaan 226
at_set_MISSING_PUISE_AEIAY() +eeeurrieiiiiieiiiie ettt ettt e et e e sab e e st e e e e nbb e e e snbeeeaanneeeean 227
L A (= T0] (U110 T () TP PR OUPPUPPRN 228
L= Y= Al o Jo 1 { () TP PU RO PPRPPOROONY 228
E L= (0] o oo () P SO SO P PP OUPPPPPPRN 229
oL ol [T () PO P PP P PP P OUPPPUPUPPOE 230
bit_first()

bit_last()

oL L= () TS PP P PP PPUPTOUPPPPPP
bit_test()

BIOWNOUL_ENADIE() ..ottt ettt e e bt e ettt e e et e e nab e nb e e e e 234
Y=Y U] T OSSPSR 235
o7 1| oo (3 1SRRIt 236

(o1 L= 1o (101 () TP PP PP PPRPPORONt 239

(ol L= T a1 (=T (0T () T TP PR PPRPPURONt 240
clear_pwm1_interrupt() clear_pwm2_interrupt() clear_pwm3_interrupt() clear_pwm4_interrupt()
clear_pwmb5_interrupt() clear_pwmB _INTEITUPL().......veeiiureeeiieie ettt 241
cog_restart() cog2_restart() cog3_restart() COg4 reStart()ccueeeeeeriiiieieeeeeiaiiieiee e e e ssieree e e e 242
cog_status() cog2_status() c0g3_StatuS() COGA_STALUS() ..eeeeriarurrrrieeeiiiiiiieee e e et e e e e s re e e e e e sieaees 242
(o (o o= 1 o] (1 T To L= 30 O P PP ST P PP PP OUPPPPPPRN

(o (o a1 (Lo [OO PR OUPRPOPRRN

(o (o (T Vo [T SO P ROV PRSPPI

(o (o 1 (=T (O ISP OUPRPOPRRN
cwg_restart() cwg2_restart() CWO3_FESEAN()coovreeiirieiiirie ittt

cwg_status() cwg2_status() cwg3_status()....
[0 Fo Lo 11 (=T (3 P OO PP P OO PP PP PP OUPPPPPPPN
(o (oo F= W =T oT =T AV T [TR OO OUPR PRI
(o (oI =T Uo [) SO RO PRPOPRRN
(o [- Ly (TP P OUPROPRRN

(o [(=T E] 0 T =T 10 |V () TP SO SO PP PT P OUPPPOPPPPN
(o [1 (= () O PP SO OO PP PRSP OUPPPPPPRN
EIAY _CYCIES() 1.ttt a et e ettt e ettt e e bt e et e e
(o L2 N 11T (O TP PO UPPPOPPRN
(o L N VL] (O IO PP OUPPUPPRN
(o [157=To] (3o 1001 (O P OO OUPPPUPPRN

disable_interrupts()

disable_pwm1_interrupt() disable_pwm2_interrupt() disable_pwm3_interrupt() disable_pwm4_interrupt()
disable_pwmb5_interrupt() disable_pwm6_interrupt() 259

div() Idiv().... 260
dma_start().... 261
(o Lo N =1 UL () I TP UP PP PPRPPOROPNY 263
(o L4 a LAY v= LU L] () T TP PP OUPPPPPPRN 264
(ST aE= o L= [0 L { () T TP PP PP OUPPPPPPRN 264
(gt Lo Lo g1 (=T (U] o £ () I SO PP PP OUPPPPPPRN 265
€raSE_PrOGIrAM_IMEMIOIY() «eeeeeiiuitteteteeaaittettee e e e e sttt et eeeeaaassbeeeeeeeaaaabsbeeeeee e s snbeeeeeeeaanbsbeeeaeesaannbeneeeeeeaansnnees 267

enable_pwm1_interrupt() enable_pwm2_interrupt() enable_pwm3_interrupt() enable_pwm4_interrupt()
enable_pwmb5_interrupt() enable_pwm6_iNterrupt().......ceeiueieiniiieiiie e 268

8

erase_eeprom()

€raSE_ProGram_IMEMOTY() «eeouueeeeiuteeeateeeeauteeaatteeeaaseeeeaaubeeeaabeteaasteeeaaabeeeaabeeeaasbeeeeasbeeeanbeeeeanbbeeesnbeeesanneeeeas 269
(2201 () TP PU OO PPRPPORON 270
(o] =T [[=T () T T P PU U PPRPPRONY 271
L= LT () T P OU OO PPRPPORPINY 272
getc() getch() getChar() FOEBIC() . ee i urieiiiie ittt ettt e e e e s ninee e 272
(o = T (o 1T () PP OUPPPOPPRN 274
1[0 T0] { () O ETOPPPRP P OUPPPOPPRN 275

[o L= o= 1) (01 =T () PR PPRPPRROY 285
L5 O1) [e = o= o0 (T () PSP OUPPUPPPTNE 286
get_capture32_ccpl() get_capture_ccpl() get capture_ccp2() get_capture_ccp3() get capture_ccp4()
[o = o= o0 (R ot o LT () TP T S OO P PP PF POV PPPOPPPPN 287

[PCD] get_capture32_ccpl() get_capture32_ccp2() get_capture32_ccp3() get_capture32_ccp4()
[o [o T o 0 (X v oot o 1] () TP OUPPPPRRN

[o L o T o0 I =Y =T oL PP OUPPPUPPRN
[o L o T o 0 T (11 1=T () I OO OUPRUPPRN
[PCD] GO CAPLUIE32()..eeiittieiitee ettt ettt ettt ettt e ekt e e bt e e st eeesan e e e naneeesbneeennnne
(o L= 0] T = T (U= () RSSO PRRPRR
(o L= A] T T (T=To | o T= ot (SRR PPRPRSRY
[o L=] o0 TS = LU (SO URRRR
get_motor_pwm_count()
get_nco_accumulator()

(o= e (ol g T = 1 1= G TP PP UP PP PPRPPOROINY
[o = A (o1 T () PO PP P PRSP OUPPPOPPRN
(o= A (14 1=T A () I T OO T PP PP OUPPPPPPRN
(o= (114 1=T0 2T () I T TP PP OUPPPPPPRN

(o= BT =T o TP PU RO P PP PPRPPOROPNt
(o= AT 0 [=T oY (O TP T TP UUPUPPPPPUROINY 299
get_timer_ccpl() get_timer_ccp2() get_timer_ccp3() get_timer_ccp4() get_timer_ccp5() ..cccooevvvnnns 300

9

get_tris_x()

[o < Lo L{ (O PSPPSR P OUPPPPPPRN
(o=] 0 1Y/ (O TP OU OO PPRPPURPINY

[o o (o Jr=To (o | {1 1=] () T T PP UR U PPUPPRPIY 307
[allo | TS o T=T=To I Vo (oo (o] o T=T () PR PUPT TP 308
NSPWIM_A0O_CAPLUIE(). uteteeiiee ettt e et s ettt e e bt e e e b bt e e et et e e enbn e e e nnbeeeabeeeeannne 309
LS o0 o TS (o] o T o110 11 () I PSP PP OUPPUUPPPOE 310
NSPWIM_tHGGET PWIMI() ettt ettt et ab et e ettt e e bt e e e sttt e st et e e enbb e e e nabeeesbeeeeannne 310
AT 1N T oo F= 1 (=T () PP OO PUPT R OTPTPPP 311
(Lol 1011 ((O TP PP T P O T P TP PP P PP O T PP OUPPPPOPPPPOE
i2c_isr_state()...

i2c_poll()

[og (Y- o [TSP P PP OTPPUPPPRNE
Lo AV = To o[() TSP OUPPUUPPTNE
(o] o1=TTo [I P OO T PO U TP P PP PP T PP OUPPPPPPPPOE 317
(Lo v= Lt () TP P ST T PP TP PP PP O TP PP OUPPPPPPPPOE 318
(o1 (o] o] (O IO PP T P TP PP P PP OO T PP OUPPPPOPPPOE 319
Ao = L (1 () PP OUPPUUUPPNE 320
(Ao S (A T () I PSP PP OTPPUUUPPOE 321
Ao L (A o 10 { () ISP OUPPUUUPPOE 322
[1 (=T (O IR PP T P PP SO PP PO TP PP OUPPPOUPPROE 323
input()

TNPUL_CRANGE_ X() +-tteeeiittie ettt ettt ettt e bttt oottt e et et e e bttt e e e et e ettt e e e sbn e e e nane e e sbnneeanene 325
1] 01U] = (T PSP OTPPUUPPTOE 326
1010101 A0 () ISP R PP UUUPPOE 327
1) G (0] o) = ot 1)Y= (O TSP OUPPUUPPROE 328
(LT o =T = o] [To [T PR P PP PPUP T ORPPPPP 329
isalnum(char) isalpha(char) iscntrl(x) isdigit(char) isgraph(x) islower(char) isspace(char)

isupper(char) isxdigit(char) — iSprint(X) ISPUNCE(X)......veeeitrieiiiiieiiie et 330
[5E: T qLe] oo G TP PP PPUP T OUPPPPI 331
(Lo =T T PP OO PPPPUP T OPPPPPPP 332
J L8 aa] o (o T (3 PP TP PPR R PPPPPPP 333
o] 311 USSP 333
=L o L= I Vo o[(T~ (O OO PP PP T PP OUPPUPUPPOE 335
L= 1o L] (O T PP PP PP PO T PP OUPPUPUPPOE 335
[T I ole] o1 7= 1S3 { () I TSP U PP PPUPT R OUPPPPI 336

lcd_load()

(o]0 Te] 1201 o (0 T SO P PP RPOTPPUUUPPNE 342
0T LT (T SO P PP OUPPUUUPPOE 342
0T N A< () T SRR PR PPUUPPPOE 343

L IS o110 Y () O OO TPROUPPUPPPROE 351
L S IR 1 (TR 1T (O PSP OTPPOUPPTNE 352

L S IR 1 (I 4 F= V1 oo) G PSP OTPPUPPPPOE 353

nargs()
OffSEt() OFffSELOMDII() ..eeeiiieee e 355
[o1011010 10t PP OUPPUPRRN 356
(o101 101 o] 1 { () PP PPPOPPRN 357
(o101 101 |1 =T (O PP PP OUPPOPRRN 358
(o101 o181 A { o= L () T TP PO P OPPPRPPOROINY 359
[o10]1o101q aTTe] o1 () PP O PP PP OUPPPPPPRN

[o1011o10 1o (o)1 I P OO P PP PP OUPPPOPPRN
output_toggle()
oL (o1 { () PP T PP PP UPTOUPPPPP
o1 o I o1V)Y/ (O IO PPUP T OUPPPPP
pid_get_result()
1[0 I =7 To [) PO P PP P PP P OUPPPUPUPPOE
1o I 41 (=T IO P PO P P OUPPUPPPPOE

o L TET=] (=T ol () PO O PSPPI OUPPUPUPPOE

pll_locked()

pmp_address(address)

pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout()coccueeereeriniiiireenenn. 370
oL pa] T =T To [T TR PPUPT TP 371
[T T 1 =1 (O I PP UPT TP 372
Lo A W o101 = oL AT 10 (o1=T () PP PP PPOUPPUUPPPOE 374
oL Lt 0101101 o] (TSSO PPOUPPUTUPPOE 374
L0 G T ¢ 1 (O PSP OUPPUUUPPOE 375
L0 NS = LU] PO UPUPT PP 376
printf() fprintf()

profileout().......c.ccc.....

psmc_blanking()

oS (o (=T To o T= T Lo [SO OTPPUUUPPNE 381
oL ([1111 (O TP PSP PROUPPUUPPTOE 382
PSMC_FTEO_BAJUSE().veeeetrieeiitee ettt e et e e b e e st e e et e e 383
PSMC_MOAUIBTION()1ttt e e bt e e bt e e sbe e e e e sbn e e e nab e e e sbeeeeaaene 384
oS ([o111 () PP O TP O PP P PP PO PP PPOUPPPPPPPPOE 385
PSMC_SHULAOWN() .ttt ettt et e ab e e e sttt e e bt e e e e aab e e e sabb e e e e nbb e e e nnbeeesnbeeeeannne 386
oS LA Y (o] (PSP OUPPUUPPTOE 387
psp_output_full(') psp_input_full() psp_overflow() psp_error() pPsSp_timMeout()......cccceerrrerrriieeriiineannnns 388
psp_read()

1T I o)1 SRR OUPPUUUPPOE
pwm_set_duty()

pwm_set_duty_percent()

[ST =T [U1=T 0103V () O P PP O PP PPUPT R OPPPPPP 394
pwm1_interrupt_active() pwm2_interrupt_active() pwm3_interrupt_active() pwm4_interrupt_active()
pwmb5_interrupt_active() pWm6_INtErruPt_ACHVE() ...coouveiiiiiieiiiiieiiiee ettt 394
501 e L= o = i o= 1o U] (T D PP OUPPUUUPROE 395
(o [T o [el o 10 o () TP PP U OO OPPPUPPOROPNY 396
[PCD] €i_get iNAEX_COUNE() .. .uteieiiiieeitiie et ettt e ettt e e et e ettt e e ettt e e anbe e e e asbeeeaanbeeeenbeeeaasseeeesnbeeeaseeaaannen 397
[PCD] gei_get iNtervVal_COUNT()......ccouuieiitiieetie ettt ettt e e s esbnee e e 398
[PCD] gei_get VEIOCItY COUNT() ..veeeiutiieiiiiieiitie ettt ettt e et e e e st e e e e 398
(o =TI A olo 10 o { () IR T OO P PP OUPPPOPPRN 399
[PCD] gei_set_iNAEX_COUNT()......uuiiiiiiiiiiiii ittt e s e e sbe e e sreae e 400

gei_status()

(VA o101 (=T G (V][TP PP PP UPT R OPPTPPR 404

read_adc() [PCD] FEAO_AUCZ2().. e ueerureeuieiuteeiieeiit sttt ettt ettt ettt sttt et ettt n e e e 404
=T To [o=V | P PSP OTPPUUPPPNE 406
=T To o= U1 o] = Lio] o () PSP P PP POUPPUUPPPNE 407
read_Calibration_MEMIOIY()o o ueieiiiiee ittt e bt e e e bt e e st et e e anbr e e e sabe e e sbeeeeannee 408
(== Vo I oo a1 i{o I T 01 {0 (0 I RO UP T OTPTPPP 409

read_configuration_memory()

read_device_info()......
read_dmt()coeeenne.
read_eeprom()
=T To =T o [To I =10 o 1 () T SO OTPPUPPPRNE

FEAA_PrOGrAM_IMIEIMOIY()eeutiteiitite ittt ee ettt ettt ettt ettt e et e e e ab e e e ettt e ekttt e e bbbt e st et e e esbn e e e naneeesbeneeaanne 414
(2= o I 1o TESY o T=T=To [= Vo (o (O IS OO TUPUP TSRO 414
FEAA_PrOGrAM_ITIEIMOIY() uttttietiteiiite ettt ettt ettt e e ettt e sttt e e ab e e e sttt e e bbbt e e bttt e sabe e e e esbn e e e saneeesbeeeeaanne 416
[To o] qoTs = 1o 0 I 00110010] oY/ () T SO OUPPUPPPRNE 417
read_Program_IMEMOIYS(). .. ceiiueieiitieeaiteeeriteeeaatete e e rab e e e s beee e bt eeeaaabeeeaabeeeaasbeeeaanbeeeaabeeeeansbeeeanbeeesbeeeeannnn 418
=T To I (o] 0 oI 0 L= T] Y () TSP OTPPUUPPPOE 418
=T To JE=To [To (ot G P OO O T PP O ST PP PP T PP OTPPPUUPPROE 419

realloc()

=1 (=T] T T (O PO U TSP PP O PP PP OUPPPPUPPPOE 421
(ST A od o1 PP OUPP PPNt
SR L o= 10 LY=o SO TPPOTPPUUPPROE
L= T o | () T PSP OUPPUPUPROE
(01 c= LI (= 1 T PP PP PPUP T PUPPPPPP
o1 C= T | () TP P U PSP PP T PP OUPPUPUPPOE
(o 1= 110 (T (- Vo [T PO PSP PP PP OUPPUPUPPOE
(o 1= 11 Y 1 =T (O TP O PO PP PP UP P OUPPUPUPPOE
(o (Y=o [TP PP P PP PPUP T PUPPPPP
201D) [(o) - L (T () PP PPUUUPTOt
[PCD] rtc_tsx_read()...
(o 11 1=T () I PO PO PP PP P P OUPPPUPUPPOE

Lo TSI\ V1 (USSP

L0 TS0 T o T USSR

rtos_enable()

(o S Yo [o To [PSP OUPPUUUPPNE 433
[0 Ce TSI 0[S [(== Vo [RO UPT TP 434
[0 T 10 IS To I T=T0 Vo [TP PP UPUPT TP 434
(e TSI 01 LT (1o T () T PP PP UPT TP 435
(o S (V] 1 () T PSP P PP POUPPUUPPPOE 436
(o T (o T [I OSSP OUPPUUUPPOE 437
(0 S e= 1] () O PO P PP ROUPP TP 437
[0 TSI =T (10T F= L= () RO UPUPT PP 438

rtos_wait()

rtos_yield()

set_adc_channel() set_adc2_channel()....

(= A= o (ol i o [0 1= (O PP R OUPR PRI

= A= g E= Lo T I o110 LT () OO OUPROPPRN
SCANT() FSCANT() 1ottt et e e 443
[PCD] SENE_GELA()..veeeutrieeiiite ittt ettt et ettt e e bt e et et e bbb e e bt s e e e 446
[PCD] SENE_PULA().ttt ettt ettt ettt e et e e bt e e b et e st et e e esbn et e s e e e sbeeeeaaene 447
[PCD] SENE_STALUS() «uvveeeutteeaiuteteaitee e et eeestteeeateeeeasae e e e ssbe e e ettt e e e aabe e e aabeee e bbb e e e anbeeesabbeeeanbneeesnbeeesnbeeeeannnn 448
set_ccpl_compare_time() set_ccp2_compare_time() set_ccp3_compare_time()
set_ccp5_compare_time() set_ccp5_compare_tiME().....cocveeirurieriiiieiiiie et 449
set_cog_blanking() set_cog2_blanking() set_cog3_blanking() set_cog4 blanking().......ccccceereunnnes 450
set_cog_dead_band() set cog2 dead_band() set cog3 dead_band() set cog4 dead band()....... 451
set_cog_phase() set_cog2_phase() set_cog3_phase() set_cogd phase()ccccooemmeeiiiiiennineens 451
S COMPAIE_TIME() -eeeeiutiieeiittie ettt ettt e ettt ettt e ettt e e e bt e e e sa et e e sbe e e e ea bt e e am b et e e enbb e e e amb e e e anbbeeeenbbeeesnbeeeanneeaeann
set_dedicated_adC_ChANNEI()........uieiiiiieiiie ettt e e

set_hspwm_event() set_hspwm_secondary_event() .
SEE NSPWIMI_AULY() ettt ettt ettt ea et oottt e e ettt e ettt e ettt e e et e et e e ane e
set_hSPWM_ AUty AdUSTMENT() ...uvveieieeiiiiiiii e e ettt e e e st e e e e e et e e e e e st e e e e e s e nntaaeeeeeesannreneeaeeeannnnnees
S NSPWIML_OVEITIAE() 1. eteeeeeeeieiitiee et e e e ettt e e e e ettt e e e e e sttt eeeeeeasntateeeeee e s ssbeeeeeeeaaantsbaeeeeesannnseneeaeesnnnnnnne
S NSPWIM_PEIIOO() ettt e ettt ettt ettt e e e ettt e e e e e bbb et e e e e e s s hbe e e e e e e e e nbbbe e et e e e e nnben e e e e e e e annnrees
S NSPWIML_PNESE() ..ttt e e e e e e r e e e e e b e e et e e e e r e e e e e e e annrees
S NSPWIM_SCAING(). eveeeteeeieit ettt ettt e e e e et e e e e e s bt e e e e e e e e e sbbbe e e e e e e snnbeneeeeeeaannnnnes
SEL NSPWIM_SCAING()+t ntreeeemttee ettt ettt ettt e et e et e e sttt e et e sttt e e et e e e nab et e s aneeeeas

SEE INPUL_TEVEIX() 1ttt et a ettt ettt

SEL_MOLOT_PWIM_GULY() -ttteenttee ettt ettt ettt a ekt e e st e e et e skt e e et e e nabe e e s ineeeeas

SEE_MOLON_PWIM_EVENT() .ttteieieiiiitieiee e e e ettt e e e e e ettt et e e e e e s sb bttt e e e e e e abb bt e e e e e e sannbe b e e e e e e e nbbbeeeeaeeaannbeseeaeeeaannnbnes 463

set_motor_unit()

set_nco_accumulator()

= A (oo L (oY= LU LT (O O TP OUPPPOPPRN
SEL_OPEN_AIAIN_X(VAIUR)eiieeiiiiiiii et ettt ettt ettt e e oottt e e e e e s bt et e e e e e e e st bbe e e e e e e sannbeneeaeeeeannnbees 466
SEL_POWET_PWITI_OVEITIAE() 1eeeiiittitete e e ittt e e e ettt e e e e e ettt et e e e e ettt et e e e e e s sbb e e e e e e e e e nbbbe e e e e e s aannbeneeaeeeaannnrees 467
SEL_POWET_PWITIX_AULY() +ereteeeiiiittitiee e e ittt e e e ettt e e e e st te et e e e s e e abb et e e e e e sasnbe e e e e e e e e nbbbeeeaeeesannbeneeaeeeaannnnees 468
(1= o101 1o o 1o T OO OUPPPOPPRN 469
L1 o100 o IO PP OUPPPOPPRN 470
set_pwml_duty() set_pwm2_duty() set_pwm3_duty() set_pwm4_duty() set_pwm5_duty()ccvrrn.. 470
set_pwml_offset() set_pwm?2_offset() set_pwm3_offset() set_pwm4_offset() set_pwm5_offset()

SEE PWIMB_OFFSEL(). uvrieiiiiiie ettt 472
set_pwml_period() set_pwm2_period() set_pwm3_period() set_pwm4_period() set_pwm5_period()

3= A g TSI o T=T o Lo [T OO PRPOPPPN 473
SEE PWIMIX _PRASE() 1ttt ettt ettt e et a bbbttt s bt e e e e aar e 474
set_timerx() set_rtcc() set_timerO() set_timerl() set_timer2() set_timer3() set_timer4() set_timer5()
.. 475
L= A (o] (O P O PSPPI 476
5310 oo I To (o o= 111 o] =1 o] 1 () SO ROUPRPOPRRN 477
Set_SU_AAC_CRANNEI() ...ttt ettt e e 478
S SIOW_SIEBW_ X() 1.ttt ettt ettt et e et 479

set_timerA()

set_timerB()

set_timerxy()

set_timer_ccpl() set_timer_ccp2() set_timer_ccp3() set_timer_ccp4() set_timer_ccp5() set_timer_ccp6()

set_timer_period_ccpl() set_timer_period_ccp2() set_timer_period_ccp3() set_timer_period_ccp4()
set_timer_period_ccp5() set_timer_Period_CCPB() ... e uueeeiueieaiiieeaiiieeaieie ettt e sibeeeateee e e e e e s aieeee e 483

(= A 1T) O OUPPUPPRN

set_uart_speed()

setjmp()

=0 oI LX) OO SO U PP O P POV PPPOPPRN
setup_adc(mode)

[PCD] SEtUP_adC2(IMOTE)eiiuieieiiiie ettt ettt ettt e et et e e et e e e abe e e sabe e e e asbeeeeanbeeeeabeeeaansreeeanbeaesaseeaaannen 487
SIS (U] o= Vo (o o To 4] (O [PPSR TP PU T UP U PPRPPOROPNY 489
2001 =) 0] o= Lo (ol 1o) €24 () I SRR OUPP PPNt 489
setup_adc_reference() setup_adC_referenCe2(()oooruriiiiiie it 490
setup_adc_reference() setup_adC_referenCe2(()ccoiuiieiiiie ittt 491
=10 o= L () PO SO P P OUPPPPPPRN 492
SIS (U] o= o) (0 (=T () T OO U OUPPRPPOROINY 493

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5() setup_ccp6() setup_ccp8()
SELUP_CCPI() SELUP_CCPLO() cuuetrtiteteeeiitttt et e e e e ettt e e e e sttt et e e e e et b et e e e e e s sbb e e e e e e e e e nbbbe e e e e e s annnbeneeaeeeaannnbees 494

setup_clcl() setup_clc2() setup_clc3() setup_clc4()

setup_comparator()

[PCD]setup_comparator_dac()

SEtUP_COMPATALOr_FIEI() «eeeieeeeiiiie ettt e et e a bt e st e e e b e e sabe e e e naneeeeas
SELUP_COMPATALOT_IMASK() euntteeeiteteettee e ettt ettt ettt ettt sb e ettt e e sa e e skt e e eabb e e e aa bt e e sabe e e e anbb e e e snbeeeenbneeeeas
[PCD] setup_compParator_SIOPE()ueeeiuiieiiriieiiiie ettt st e e 503
SELUP_COMPAIALON_X() +-utvvveeeeeaauttteteaeeaautteteeeeaaauttbeeeaeesaasbbseeeaeeaaaabsbeeeee e e s snbeeeeaeeaanbsbeeeaeeesnnbeneeaeeaaansnbees 504
SELUP_COMIPAE() ¢ tuttteeietite ettt ettt ettt etttk e bttt e e bt s et e e bbbt e e bbbt e sa ket e e abe et e sa b et e s bbb e e e bb e e e st e e e nabnreeeas 505
=0 o oo 10101 (=Y £ () [P PP PR OUPP PPN 505
=0 oI (ol (a0 To T [) OO OUPRPOPPRN 507
SELUP_COG()SEIUP_COG2()-rntreeeuteeeaineeeattteesiteeeatteeeatteeessbeeeasbeeeeaabeeeaabeeeeasbbeeeaabeeeaabeeeeanbbeeesnbeeesaneeeeeas 508
setup_cwg() SEetuP_CWO2() SELUP_CWOB() «eerurreeiurrieiirieeiieie ettt sttt sttt et e et e et eesninee e 509
[PCD] setup_current_source()

1= (0] oI P> Yo (O I OO T TP P PP TSP PP PP OUPPPPPPPN

L= 0] o T (o1 O SO P P OUPRPPPRRN
=10 o Je (<o [[or= 1 =To [Vo (o () T SO ST PR PRI
=100 o T e 40 F= T PR UPPOPPRN 514
51100 oI 101 (0 F T O P P TSP PP PT P OUPPPPPPRN 515
SEEUP_ASIMI() + ettt ettt ettt et h e h e a et e e e b et et e e e e b et anr e e 516
SELUP_EXEEINAI_IMEIMOIY().t utttieietie ettt ettt ettt e et e e ettt e et e e et e e nabe e e s abnreeeas 517
=0 oI 1o [Y o T T=To I Uo (o () O PR PPOPPRN 518
Setup_high_SPEEA_A0C _PAIN() +eeeuveeeiiiieeiitie et ettt ettt ettt et e et e e e aab e e e ssb e e e anbe e e e anbbeeesbeeeeanneaeeas 519
setup_hspwm() Setup_hSPWM_SECONAAIY().....cciiuurieiiiiieiiiieaiiiee ettt et e st e e e e eesaneeeeeas 520
setup_hspwm_blanking()

SEtUP_NSPWM_CHOP_CIOCK() .veeeietiieiitt ettt e s inee e 522
SEtUP_NSPWM_CUITENT_IIMIE()..eeeeitiieiiie ettt ettt e e e esinee e 523
SELUP_NSPWIM_EVENT() 1.ttt ettt a ettt e ettt e et e e et e e ettt e nab e e e e e 524
SELUP_NSPWIM_FAUIL() .ottt e e ettt e e e st e e e e e s e st b e e e e e e e annben e e e e e e e annnnees 525
Setup_NSPWM_FEEA_TONWAIT()ueeieieeiiiiii ittt e e e et e e e e e s e e e e e e e e nnnnnees 525
SELUP_NSPWIM_TOGIC_X() -ettteteeeiiiiititee et e ettt e ettt e e e e ettt e e e e e et et e e e e e s bt e e e e e e e e e nbb b e e e e e e s annbeneeeeeaaannnrnes 526
SELUP_NSPWIM_SYNC() +uttteeiiitte ettt ettt et e ettt e e st e e ettt e ettt e e et e nab e e s b e e 527
S0 oI] o)V T U To =T o (O SO P PP OUPPPOPPRN 528
SELUP_NSPWIMI_UNIE() -1eteinttte ettt ettt et ea bt e e ettt et e ettt e e e et e nab et e s bneeeeas 529
setup_hsSpWMm_UNit_CROP_CIOCK()...eeeieiiiiiiie e e e e e e e e anennees 530

setup_lcd()

setup_low_volt_detect()

310 oI Lol (o] gl o 112 11 () IO PP PP PPPOPPRN
SIS (U] T 1 0 T TP TP PP PPRPPORONY
(<1 (0] o g (oo 1 () I T P PU T UR U PPRPPORNY 535
setup_opampl() setup_opamp2() setup_opamp3() Setup_0PamPA().....cccurreeeriiiiirieieeeeeiiiiieee e e 536
setup_opampl() setup_opamp2() setup_opamp3() Setup_0PampPa()....ccccerrurrirrireeiiiieeniieeerieee e 537
=0 oI LTod |- Lo T () O PP OU PRSPPI 538
=0 oI oo - T PP PT S OUPPPOPPRN 540
(ST (U o I oo [PP PO UOPUPPRPPORON 540
setup_pmpP(OPLioN,addreSS_MASK).........uiiiiriiiiiiie ittt 541
setup_power_pwm().......ccce..

setup_power_pwm_faults()
SELUP_POWET_PWIMI_PINS() teeuttteeitiee ittt e ettteesiteee ettt e e s aube e e sabeeeaasbeeeaaabe e e aabe e e e ambb e e e aabeeeaabeeeeanbbeeesnbeeeaabneeeaan

=0 T o 10 (PP PR OUPRPOPRRN
=10 oI ¢ 1] 13 (o (O IO O T P U PP ST P PP PP OUPPPPPPPN 546

setup_psp(Option,addreSS_MASK)......cc.uiiiiiiiiiiiiie it 548
setup_pwm1() setup_pwm2(') setup_pwm3() SEIUP_PWMA() .coovriiririieiiiieeiiiee et 550
=10 o T (=Y () SO P P OUPRPOPPRN 550
=10 o T (o () T PP P OUPPPUPPRN 551
=0 oI (o1 = T 1 PP PP OUPPUPPRN

=10 oI - Uo o () I O T ST SO P OTS PP PP PP OUPPPTPPPPN

[PCD] setup_sent()....
SEEUP_SITIEX()+ttt ettt ettt ettt ettt etttk e e e e a4t e e ettt e e ea et ea ke e ettt e e bt e e et et e e e

setup_spi() setup_spi2() Setup_SPi3() SELUP_SPIA()-reeeiuueearimrieiiiiieiiiie ettt e seee e 556
=0 T 1 =T o T OO OUPPUPPRN 557
=0 T 1 =T 7Y (O TP PR OUPPOPRRN
SIS (U] 00 =T £ =T TP TP PP U OO P PPRPPOROPNY
=10 oI 1 0 =T (O T SO O SO U PP OUPPPOPPRN
S0 oI 10 =T o X T O PP PP POV PPPOPPRN
=10 oI 10 =T 2 (T S O PP PP OUPPPPPPRN
SIS (U] 0 =T T () T TP U PP PPRPPOROPNY
SIS (U] 0 0= T () TP U PP PPRPPOROINY

setup_timer5()...

1= 0] T = { () T T SO PP P PP OUPPPOPPPN
SELUP_VIEF() SEIUP_VIEF2(1) cueeeiiiiii ettt ettt 567
=0 oo L () IR O PP OUPPPPPPRN 568

setup_zcd()

L] 110 =3 1 OO PR PPN PRI
shift_right()

<12 o (TP P UT OO PPRPPORUINt 573
(ST T 0101 T TSP PU OO PPRPPORONY 574
[0 e =T To [) PP PSS UPPPOPPRN 575
S0l e (=T A (1 1= o () O O P PP OUPPPOPPRN 576
L]0 P T () I OO P PP OUPPPOPPRN 576
LS S = LU] () P TP PPRPPORONY 577
L] 101 P Y (o] o () I T T T U P PP OO P PP TP OUPPPPPPPN
smtx_write()

smtx_update() ...

spi_data_is_in() spi_data_is_in2()spi_data_is_in3()

L] oL 011 () TP TP P R OUPRPOPPRN

S oI o1 (11 (T (O OO T PP PP ST O PP PP PP OUPPPPPPRN 581
spi_read() spi_read2() spi_read3() SPIi_rCAUA().....ccooiiiiuiiiriiiiiiiiite it 582
L] T L= Al V(o L () P O T T U PP TSP PP PP OUPPPPPPPN 584
LS oI o LCT=To [SO P P OUPRPOPPRN 585
[PCD] SPi_tranSTEI_WIEE() . .eeeeuteieiiiiee ettt ettt ettt ettt e ettt e e e b bt e e snbe e e e ansbee e snbeeesbeeeeannne 585
spi_write() spi_write2() SPi_WIte3() SPI_WILEA() ..eeiiureeeiiiieeiiiee ettt et e e 586
LS oI (=1 (O O T T T SO TSSO PP PT P OUPPPPPPRN

spi_xfer_in() ..

L] o411t () TP T P T ST O PP PP PF P OUPPPTPPPPN
(o (O SO OUPPOPPRN
LS - 1o o [I OO OUPPPUPPRN
STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr() stremp()
strcoll() strcspn() strerror() stricmp() strlen() striwr() strncat() strncmp() strncpy()

strpbrk() strrchr() strspn() strstr() strxfrm() 592

Strepy () StrCOPY() «oveevvveeieeee e 593
strtod() [PCD] strtof() [PCD] strto48() 594
LS (0] () T TP P PT R UP PP PPRPPOROPNY 595
L] 14 (o [T SO SO U PP OUPPPPPPRN 596
LS 14 (o101 T TS SO PP PP OUPPPOPPRN 597
ST o1 () I PO SO P PP OUPPPOPPRN 598
(e[0 =T T (o TN o] o 1= () TP PP UPOUPPUPPOROPNY 599
[reT0 el aTo =T I o =] (o () T TP PP UPUUPPRPPOROINY 599
(e T0TedaTo = Vo I o 1 {0 I T TP U PP PPUPPRUROINY 600

Lol 0 ol] oF= Lo JIES) - 1= () I OO PP OUPPPPPPPN 601

EX_DUFFEI_@VAIIADIE() ..eie ettt 602
Lo o101 (=Tl o) (=] () I TP PR PPRPPOROINY 603
Lo o101 =T {1 T P PU U PUUPPRPPROt 604
(T I Lo | () T PO T PPRPPRURONY 605
[V =] 2 Lo [T PO OUPRPPPI 605
(V= S - Ly () TP PP PSP OUPRPPPI 606
1 AR NV oL (oo [=T o O PSP OUPRPPPI 607
gL I o= T T PSP PPPPTN 608
Write_CONfIGQUIAtION_MEMIOIY() .oeiiiuiiiiiiiiee ittt ettt ettt e e e e e e e e eineees 609
LI =TT ol (o] 1 (O P T T T T P PP PP PP PP PP PP PPPPPPPI 610
WIEE_@XEEINAL_IMEIMOIY() 1. tteeiutiie ettt ettt ettt ettt h ettt e ettt e e ab e ettt e e e kb e e e aabe e e s bbb e e e enb e e e snbeeeeanneeas 611
L I (T aTo (=T I =V o T I PP RPOUPRPRPI 612
NI ol oTe] €= Lo I =TT o] (o] 0 1 () O PRSP OUPRRPP 613
Wt _PrOGIraM_IMEMOIY() eveieiiiieeiitite ittt e ettt ettt ettt sab e ettt e eab et st e e et e e ea et e s bte e e e sab e e e nab e e e e eineees

write_program_memory8()
zed_status() ..oocvveeenenne.
Standard C Include Files ...

errno.h
L0 L 4 RO PR PURPPP PP PPRRPRTN 618
110 011 S o P PO PP PP PP PP OUPPPPPPPROE 619
JOCAIELIN L. et e ettt ettt e e e 620
=11 [a0] o o T P T SO PSSP PP PF POV PPPPPPPN 620
LS o [0 =) 1 o RO PR PURPPPT PP PPRRPRTN 620
SEAIO N et n e e 620
SUANDLI < bbb bbb e bbbt ae 620
SOftWArE LICENSE AQIEEIMIENT.ci ittt ettt e e e e et e e e e e et bbbt e e e e e e s b be e e e e e e e e aabab et eeeeeaannbebeeeeeaaannnnees 622

19

Overview

OVERVIEW

PCB, PCM, PCH and PCD

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for
14-bit opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many
similarities, all three compilers are covered in this reference manual. Features and
limitations that apply to only specific microcontrollers are indicated within. These
compilers are specifically designed to meet the unique needs of the PIC® microcontroller.
This allows developers to quickly design applications software in a more readable, high-
level language.

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which
include the dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed
to meet the unique needs of the dsPIC® microcontroller. This allows developers to
quickly design applications software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and
bit twiddling operations. All normal C data types are supported along with pointers to
constant arrays, fixed point decimal, and arrays of bits.

rep] Special built in functions to perform common functions in the MPU with ease.

ireo] Extended constructs like bit arrays, multiple address space handling and effective
implementation of constant data in Rom make code generation very effective.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated
development environment for compiling, analyzing and debugging in real-time. Other
features and integrated tools can be viewed here.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some
limitations. As an example of the limitations, function recursion is not allowed. This is due
to the fact that the PIC® has no stack to push variables onto, and also because of the
way the compilers optimize the code. The compilers can efficiently implement normal C
constructs, input/output operations, and bit twiddling operations. All normal C data types
are supported along with pointers to constant arrays, fixed point decimal, and arrays of
bits.

PIC® MCU, MPLAB® IDE, MPLABB’ ICD2, MPLAB® ICD3 and dsPIC are registered trademarks of Microchip Technology Inc. in the U.S. and other
countries. REAL ICE™, ICSP™ and In-Circuit Serial Programmlng are trademarks of Microchip Technology Inc. in the U.S. and other countries.

20

http://www.ccsinfo.com/content.php?page=ideoverview

Overview

Installation

Insert the CD ROM, select each of the programs you wish to install and follow the on-
screen instructions.

If the CD does not auto start run the setup program in the root directory.

For help answering the version questions see the "Directories" Help topic.

Key Questions that may come up:
Keep Settings - Unless you are having trouble select this
Link Compiler Extensions - If you select this the file extensions like .c will start
the compiler IDE when you double click on files with that extension. .hex files start

the CCSLOAD program. This selection can be change in the IDE.

Install MP LAB Plug In - If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

Install ICD2, ICD3...drivers-select if you use these microchip ICD units.
Delete Demo Files - Always a good idea

Install WIN8 APP- Allows you to start the IDE from the Windows8 and
Windows10 Start Menus.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently. Itis
recommended to send an email to: support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach
any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if
email responses are not adequate. Please call 262-522-6500 x32.

21

http://www.ccsinfo.com/downloads.php

Overview

Directories

The compiler will search the following directories for Include files.
e Directories listed on the command line
o Directories specified in the .CCSPJT file (edit in the IDE under
Options>Project>Include)
e Directories specified in the ccs.ini file found using Start>All
Programs>PICC>User Data Dir
e The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs are in \PICC\EXAMPLES. The include files are in PICC\drivers. The device
header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
\PICC\DLL\5.xxX.

It is sometimes helpful to maintain multiple compiler versions. For example, a project
was tested with a specific version, but newer projects use a newer version. When
installing the compiler you are prompted for what version to keep on the PC. IDE users
can change versions using Help>about and clicking "other versions.” Command Line
users use start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in
%APPDATA%\PICC

File Formats

.c - This is the source file containing user C source code.

.h - These are standard or custom header files used to define pins, register, register
bits, functions and preprocessor directives.

.pjt - This is the older pre- Version 5 project file which contains information related to
the project.

.ccspijt - This is the project file which contains information related to the project.

st - This is the listing file which shows each C source line and the associated
assembly code generated for that line.

22

Overview

The elements in the .L ST file may be selected in PCW under
Options>Project>Output Files

CCS Basic - Standard assembly

with Opcodes - Includes the HEX opcode for each instruction

Old Standard -

Symbolic - Shows variable names instead of addresses

Mach code - Includes the HEX opcode for each instruction

SRF names - Instead of an address, a name is used. For example, instead of
044, will show CORCON

Symbols - Shows variable names instead of addresses

Interpret - Adds a pseudo code interpretation to the right of assembly
instruction to help understand the operation. For example: LSR
W4 ,#8,W5 : W5=W4>>8

.sym - This is the symbol map which shows each register location and what program
variables are stored in each location.

.Ssta- The statistics file shows the RAM, ROM, and STACK usage. It provides
information on the source codes structural and textual complexities using
Halstead and McCabe metrics.

tre - The tree file shows the call tree. It details each function and what functions it calls
along with the ROM and RAM usage for each function.

.hex - The compiler generates standard HEX files that are compatible with all
programmers. The compiler can output 8-bet hex, 16-bit hex, and binary files.

.cof - This is a binary containing machine code and debugging information. The debug
files may be output as Microchip .COD file for MPLAB 1-5, Advanced Transdata
.MAP file, expanded .COD file for CCS debugging or MPLAB 6 and up .xx .COF
file. All file formats and extensions may be selected via Options File Associations
option in Windows IDE.

.cod - This is the binary file containing debug information.

.rtf - The output of the Documentation Generator is exported in a Rich Text File format
which can be viewed using the RTF editor or Wordpad.

.rvf - The Rich View Format is used by the RTF Editor within the IDE to view the Rich
Text File.

.dgr - The .DGR file is the output of the flowchart maker.

.esym or .xsym - These files are generated for the IDE users. The file contains
Identifiers and Comment information. This data can be used for automatic
documentation generation and for the IDE helpers.

23

Overview

.0 - Relocatable object file.

.0osym - This file is generated when the compiler is set to export a relocatable object file.
This file is a .sym file for just the one unit.

.err - Compiler error file.
.ccsload - Used to link Windows Apps to CCSLoad
.ccssiow - Used to link WindowsApps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCSC [options] [cfilename]
Valid options:

+FB Select PCB (12 bit) -D Do not create debug file

+FM | Select PCM (14 bit) +DS Standard .COD format debug file

+FH Select PCH (PIC18XXX) +DM .MAP format debug file

+YX Optimization level x (0-9) +DC Expanded .COD format debug file

+FD Select PCD +DF Enables the output of an COFF debug

(dsPIC30/dsPIC33/PIC24) file.

+FS Select SXC (SX) +EO Old error file format

+ES Standard error file -T Do not generate a tree file

+T Create call tree (. TRE) -A Do not create stats file (.STA)

+A Create stats file (.STA) -EW Suppress warnings (use with +EA)

+EW | Show warning messages -E Only show first error

+EA Show all error messages +EX Error/warning message format uses

and all warnings GCC's "brief format" (compatible with
GCC editor environments)
The xxx in the following are optional. If included it sets the file extension:

+LNxxx | Normal list file +08xxx | 8-bit Intel HEX output file

+LSxxx | MPASM format list file +OWxxx | 16-bit Intel HEX output file

+LOxxx | Old MPASM list file +OBxxx | Binary output file

+LYxxx | Symbolic list file -0 Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+PXxXx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

24

Overview

+Z Keep scratch files on disk after compile

+DF COFF Debug file

+="." Same as I="..." Except the path list is appended to the current list

I=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes”
If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

out="di | Use this directory for output files

rIl

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#xxx="y | Set a global #define for id xxx with a value of yyy, example:

yy" #debug="true"

+GxxX= | Same as #xxx="yyy"

"yyy"

+? Brings up a help file

-? Same as +?

+STDO | Outputs errors to STDOUT (for use with third party editors)

uT

+SETU | Install CCSC into MPLAB (no compile is done)

P

sourceli | Allows a source line to be injected at the start of the source file.

ne= Example: CCSC +FM myfile.c sourceline="#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read
from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line
parameters are read from that file before they are processed on the command line.

25

Overview

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

The PCW IDE provides the user an easy to use editor and environment for developing
microcontroller applications. The IDE comprises of many components, which are
summarized below. For more information and details, use the Help>PCW in the
compiler..

Many of these windows can be re-arranged and docked into different positions.

Menu

All of the IDE's functions are on the main menu. The main menu is divided into separate
sections, click on a section title ('Edit', 'Search’, etc) to change the section. Double
clicking on the section, or clicking on the chevron on the right, will cause the menu to
minimize and take less space.

Editor Tabs

All of the open files are listed here. The active file, which is the file currently being edited,
is given a different highlight than the other files. Clicking on the X on the right closes the
active file. Right clicking on a tab gives a menu of useful actions for that file.

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects’ shows all the recent
projects worked on. 'ldentifiers' shows all the variables, definitions, prototypes and
identifiers in your current project.

Editor

The editor is the main work area of the IDE and the place where the user enters and edits
source code. Right clicking in this area gives a menu of useful actions for the code being
edited.

Debuqgging Windows

Debugger control is done in the debugging windows. These windows allow you set
breakpoints, single step, watch variables and more.

26

Overview

Status Bar

The status bar gives the user helpful information like the cursor position, project open and
file being edited.

Output Messages

Output messages are displayed here. This includes messages from the compiler during
a build, messages from the programmer tool during programming or the results from find
and searching.

27

Program Syntax

PROGRAM SYNTAX

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose
and the functions could be called from main or the sub-functions. In a large project
functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to
include the appropriate device file using #include directive to include the device specific
functionality. There are also some preprocessor directives like #fuses to specify the fuses
for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large
number of standard C libraries as well as other device drivers that can be included and
used in the programs. CCS also provides a large number of built-in functions to access
the various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The
compiler recognizes these special types of comments that can be later exported for use
in the documentation generator. The documentation generator utility uses a user
selectable template to export these comments and create a formatted output document in
Rich Text File Format. This utility is only available in the IDE version of the compiler. The
source code markups are as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment
names are case sensitive and they must match the case used in the documentation
template.

For example:

/FPURPOSE This program implements a Bootloader.

/*AUTHOR John Doe

A''ll' followed by an * will tell the compiler that the keyword which follows it will be the
named comment. The actual comment that follows it will be exported as a paragraph to
the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

28

Program Syntax

05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration.
For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For
example:

/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global
Comments. These comments appear before the function, and the names are exported
as-is to the documentation generator.

For example:

/*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

{

}

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not

available on all keyboards as follows:

Sequence Same as
?2?=
?2?2(
??/
?7?)
??'
??<

| S| —|—|F

29

Program Syntax

2?1 |
27> }
?7?- ~

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in
the main file or the sub-files to use the automatic linker included in the compiler. All the
header files, standard libraries and driver files can be included using this method to
automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you
can say in:

main.c:
#include <device header file>
#include<x.c>
#include<y.c>
#include <z.c>

X.C:
#include<x.h>

y.C:
#include<y.h>

Z.C:
#include<z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file
compiled.

Note that the #module directive can be used in any include file to limit the visibility of the
symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH,
PCHWD and PCDIDE. When using multiple compilation units, care must be given that
pre-processor commands that control the compilation are compatible across all units. It
is recommended that directives such as #FUSES, #USE and the device header file all put

30

Program Syntax

in an include file included by all units. When a unit is compiled it will output a relocatable
object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these
methods and example projects are included in the MCU.zip in the examples directory of
the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over
RS232:

#include <16F877A.h> // Loads chip specific
definitions

#fuses NOPROTECT // Turn off code protection
#use delay(clock=20000000) // Specifies clock speed

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7) // Creates RS232 libraries
void main () {
unsigned int8 i, value, min, max;

printf ("Sampling:"); // Printf from the RS232 library
setup adc ports (ANO) ; // Make ANO a analog pin
setup adc (ADC_CLOCK INTERNAL) ; // Start up the ADC
set_adc_channel (0) ; // Set ADC channel to ANO
do {
min=255;
max=0;
for (i=0; 1i<=30; ++1i) {
delay ms (100); // delay function from the delay
library
value = read adc(); // Built-in A/D read function

if (value<min)
min=value;
if (value>max)
max=value;

}

printf ("\r\nMin: %2X Max: %2X\n\r",min,max) ;
} while (TRUE) ;

// This version of the example uses the C++ cout instead of printf
// and it also shows data streaming through the ICD instead of using
// an RS232 port

#include <16F877A.h> // Loads chip specific definitions

#fuses NOPROTECT // Turn off code protection

#use delay(clock=20000000) // Specifies clock speed

#use rs232 (ICD) // Creates RS232 libraries (using the ICD)
#include <ios.h>

void main () {

unsigned int8 i, value, min, max;

31

Program Syntax

cout << "Sampling:" << endl;

setup_adc_ports (ANO) ; // Make ANO a analog pin
setup_adc (ADC_CLOCK_ INTERNAL) ; // Start up the ADC
set_adc_channel (0); // Set ADC channel to ANO
do {
min=255;
max=0;
for (i=0; i<=30; ++1i) {
delay ms (100); // delay function from the delay library
value = read adc(); // Built-in A/D read function

if (value<min)
min=value;
if (value>max)
max=value;

}

cout << hex << "Min: " << min << " Max: " << max << endl;
} while (TRUE);

32

STATEMENTS

Statements

STATEMENT

if (expr) stmt; [else stmt;]

while (expr) stmt;
do stmt while (expr);

for (expril;expr2;expr3) stmt;

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]

Example
if (x==25)
x=0;
else
x=x+1;
while (get rtcc() !=0)
putc('n’);
do {
putc (c=getc());
} while (c!=0);
for (i=1;i<=10;++1)

)

printf (“su\r\n”,1i);

switch (cmd) {
case 0: printf(“cmd
0”);break;

case 1l: printf (“cmd
1”) ;break;

o} default: printf (“bad
cmd”) ;break;
}
return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: i++;
break; break;
continue; continue;
expr; i=1;
{[stmt]} (at;
b=1;
Zero or more J
declaration; int i;
Note: Itemsin[] are optional
E
if-else

The if-else statement is used to make decisions.

The syntax is:
if (expr)
stmt-1,

33

Statements

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:
if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement

associated with it is executed and it terminates the chain. If none of the conditions are
satisfied the last else part is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

while
Used as a loop/iteration statement.

The syntax is:
while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in
which case the execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

34

Statements

do-while

Differs from while and for loop in that the termination condition is checked at the bottom
of the loop rather than at the top and so the body of the loop is always executed at least
once. The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when
it becomes false the loop terminates.

Also See: Statements , While

for

Also used as a loop/iteration statement.
The syntax is:
for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is the
termination check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++1)
printf ("$ul\r\n",1i);

Also See: Statements

switch

Also a special multi-way decision maker.
The syntax is
switch (expr) {
case constl: stmt sequence;
break;

[default:stmt]

}

This tests whether the expression matches one of the constant values and branches
accordingly.

35

Statements

If none of the cases are satisfied the default case is executed. The break causes an
immediate exit, otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd");
break; }

Also See: Statements

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:
return(expr);

Example:
return (5);

Also See: Statements

goto

The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's are
used sparingly, if at all.

Example:
goto loop;

Also See: Statements

36

Statements

label

The label a goto jumps to.
The syntax is:
label: stmnt;

Example:
loop: i++;

Also See: Statements

break

The break statement is used to exit out of a control loop. It provides an early exit from
while, for ,do and switch.
The syntax is

break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to
begin.
The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control
passes the
re-initialization step in case of for.

Example:
continue;

Also See: Statements

37

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

stmt

Zero or more semi-colon separated.

The syntax is:
{[stmt]}

Example:
{a=1;
b=1;}

Also See: Statements

38

Statements

EXPRESSIONS

Constants

123 - Decimal
123L - Forces type to & long (UL also allowed)

123LL - Forces type to & int32;
eep] 123LL - Forces type to & 64 for PCD ULL also allowed

0123 - Octal

0x123 - Hex

0b010010 - Binary

123.456 - Floating Point

123F - Floating Point (FL also allowed)
123.4E-5 - Floating Point in Scientific Notation
'X' - Character

\010' - Octal Character

"\XA5' - Hex Character

"\c' - Special Character. Where c is one of:
\n Line Feed - Same as \x0Oa
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07
\v Vertical Space - Same as \xOb
\? Question Mark - Same as \x3f
\' Single Quote - Same as \x22
\" Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5c¢

"abcdef" - String (null is added to the end)

Identifiers

Expressions

ABCDE - Up to 32 characters beginning with a non-numeric. Valid characters are A-Z, O-
9 and _ (underscore). By default not case sensitive Use #CASE to turn on.

ID[X] - Single Subscript
ID[X][X] - Multiple Subscripts
39

ID.ID

Expressions

- Structure or union reference

ID->ID - Structure or union reference

Operators

Addition Operator

Addition assignment operator, X+=y, is the same as x=x+y

Array subscrip operator

Bitwise and assignment operator, X&=y, is the same as x=x&y

Address operator

Bitwise and operator

Bitwise exclusive or assignment operator, x"=y, is the same as x=x"y

Bitwise exclusive or operator

Bitwise inclusive or assignment operator, xl=y, is the same as x=xly

Bitwise inclusive or operator

Conditional Expression operator

Decrement

Division assignment operator, x/=y, is the same as x=x/y

Division operator

Equality

Greater than operator

Greater than or equal to operator

Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the same as x=x<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Member operator for structures and unions

%=

Modules assignment operator x%=y, is the same as x=x%y

Modules operator

Multiplication assignment operator, x*=y, is the same as x=x*y

Multiplication operator

One's complement operator

Right shift assignment, x>>=y, is the same as x=x>>y

40

Expressions

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator, x-=y, is the same as x=x-y

= Subtraction operator

sizeof

Determines size in bytes of operand

See also: Operator Precedence

Operator Precedence

PIn Descending Precedence Associativity
(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - -expr expr - - Left to Right
lexpr ~expr +expr -expr Right to Left
(type)expr *expr &value sizeof(type) Right to Left
expr*expr expriexpr expryoeexpr Left to Right
expr+expr expr-expr Left to Right
expr<<expr expr>>expr Left to Right
expr<expr expr<=expr expr>expr expr>=expr Left to Right
expr==expr exprl=expr Left to Right
expr&expr Left to Right
expriexpr Left to Right
expr | expr Left to Right
expr&& expr Left to Right
expr || expr Left to Right
expr ? expr: Right to Left
expr

Ivalue = expr Ivalue+=expr Ivalue-=expr Right to Left
Ivalue*=expr lvalue/=expr Ivalue%=expr Right to Left
Ivalue>>=expr | Ivalue<<=expr | Ivalue&=expr Right to Left
Ivaluer=expr Ivalue|=expr Right to Left
expr, expr Left to Right

(Operators on the same line are equal in precedence)

41

Data Definitions

DATA DEFINITIONS

This section describes what the basic data types and specifiers are and how variables
can be declared using those types. In C all the variables should be declared before they
are used. They can be defined inside a function (local) or outside all functions (global).
This will affect the visibility and life of the variables.

A declaration consists of a type qualifier and a type specifier, and is followed by a list of
one or more variables of that type.
For example:
int a,b,c,d;
mybit e, f;
mybyte g[3][2];
char *h;
colors j;
struct data record data[1l0];
static int i;
extern long 7j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,j,k; // colors is the enum
type and i,73,k
//are variables of
that type

SEE ALSO:

Type Specifiers/ Basic Types
Type Qualifiers

Enumerated Types
Structures & Unions

typedef
Named Reqisters

Basic Types

Type-
Specifi
er
intl 1 bit Otol N/A 1/2
number

int8 8 bit 0to 255 -128 to 127 2-3

Size Unsigned Signed Digits

42

Data Definitions

number
int16 16 bit 0 to 65535 -32768 to 32767 4-5
number
int32 32 bit 0to -2147483648 to 9-10
number 4294967295 2147483647
int48 48 bit Oto -140737488355328 14-15
number 28147497671 | to
0655 140737488355327
int64 64 bit N/A - 18-19
number 92233720368547758
08 to
92233720368547758
07
float3 | 32 bitfloat | -1.5 x 10™ to 3.4 x 10° 7-8
2
float4 48 bit float | -2.9x 10 to 1.7x10 [pcp -2.9x10 | 11-12
8 (higher ¥ t0 1.7x10%
precision)
floaté | 64 bit float | -5.0x 10 to 1.7 x10 [pcp] -5.0 x 10 15-16
4 34 t0 1.7 x 10 3%

C Standard Default Type Default Type - PCD
short intl signed int8

char unsigned int8 signed int8

int int8 signed int16

long int16 signed int32

long long int32 signed int64

float float32 float32

double N/A float64

Note: All types, default are unsigned. [rcp) All types, except float char, by default are
signed. However, may be preceded by unsigned or signed (Except int64 may only be
signed) . Short and long may have the keyword INT following them with no effect. Also
see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and /0.
Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted.
The device header files contain defines for BYTE as an int8 and BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float
formats are described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,
typedef, Named Regqisters

43

Data Definitions

Type Qualifiers

static - Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

auto - Variable exists only while the procedure is active. This is the default and AUTO
need not be used.

double - A reserved word but is not a supported data type.

extern - External variable used with multiple compilation units. No storage is allocated.
Is used to make otherwise out of scope data accessible. there must be a non-
extern definition at the global level in some compilation unit.

register - Is allowed as a qualifier however, has no effect.
ireo] IS possible a CPU register instead of a RAM location.

_ fixed(n) - Creates a fixed point decimal number where n is how many decimal places to
implement.

unsigned - Data is always positive.

signed - Data can be negative or positive.
ipeo] This is the default data type if not specified.

volatile - Tells the compiler optimizer that this variable can be changed at any point
during execution.

const - Datais read-only. Depending on compiler configuration, this qualifier may just
make the data read-only -AND/OR- it may place the data into program memory
to save space. (see #DEVICE const=)

rom - Forces data into program memory. Pointers may be used to this data but they can
not be mixed with RAM pointers.

[pcp] roml - Same as rom except only the even program memory locations are used.

void - Built-in basic type. Type void is used to indicate no specific type in places where a
type is required.

readonly - Writes to this variable should be dis-allowed.
_bif - Used for compiler built in function prototypes on the same line.

__attribute__ - Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions,
typedef, Named Registers

44

Data Definitions

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] {[id[=cexpr]] }

One o:l'rl;ore comma separated

The id after enum is created as a type large enough to the largest constant in the list. The ids in
the list are each created as a constant. By default the first id is set to zero and they increment by
one. If a =cexpr follows an id that id will have the value of the constant expression an d the
following list will increment by one.

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be
2 and
// blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, typedef,
Named Reqisters

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of different
types, grouped together as a single unit.

struct[*] [id] { | type-qualifier [*]id | [:bits]; }Hid]
I
= L
One or more, Zero
semi-colon or more
separated
For example:

struct data record ({
int al2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data var; //data record is a structure type
//data var is a variable

irco] Field Allocation:
o Fields are allocated in the order they appear.
e The low bits of a byte are filled first.

45

Data Definitions

e Fields 16 bits and up are aligned to a even byte boundary. Some Bits may by
unused.

¢ No Field will span from an odd byte to an even byte unless the field width is a
multiple of 16 bits.

Union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of
data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; }Hid]
One or more, U
semi-colon Zero
separated or more
For example:
union u_tab {
int ival;
long 1lval;
float fval;
}i //u_tag is a union type that can hold a float

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types, typedef,
Named Registers

typedef

If typedef is used with any of the basic or special types it creates a new type name that
can be used in declarations. The identifier does not allocate space but rather may be
used as a type specifier in other data definitions.

typedef - [type-qualifier] [type-specifier] [declarator];

For example:
typedef int mybyte; // mybyte can be used in
declaration to
// specify the int type
typedef short mybit; // mybyte can be used in
declaration to
// specify the int type
typedef enum {red, green=2,blue}colors; //colors can be used to declare
//variable of this enum type

46

Data Definitions

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions,
Enumerated Types, Named Registers

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to
define a memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :

addressmod

(name, read function,write function,start address,end address,
share) ;

Where the read_function and write_function should be blank for RAM, or for other
memory should be the following prototype:

// read procedure for reading n bytes from the memory starting at location
addr
//

void read function(int32 addr,int8 *ram, int nbytes) {

}
//write procedure for writing n bytes to the memory starting at location addr

void write_ function(int32 addr,int8 *ram, int nbytes) {

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

Example:
void DataEE Read (int32 addr, int8 * ram, int bytes) {
int i; N
for (i=0; i<bytes;i++, ram++, addr++)
*ram=read eeprom(addr) ;

}

void DataEE Write (int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write eeprom(addr, *ram) ;

}

addressmod (DataEE,DataEE read,DataEE write, 5, 0xff);
// would define a region called DataEE between
// 0x5 and Oxff in the chip data EEprom.

47

Data Definitions

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type directive
can be used to make this memory region as default for variable allocations.

The syntax is :
#type default=addressmodname // all the variable declarations that

// follow will use this memory region

#type default= // goes back to the default mode
For example:
Type default=emi //emi is the addressmod name defined

char buffer([8192];
#include <memoryhog.h>
#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The
different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is
used before the identifier, the identifier is treated as a constant. Constants should be
initialized and may not be changed at run-time. This is an easy way to create lookup
tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The

address used for ROM data is not a physical address but rather a true byte address. The

& operator can be used on ROM variables however the address is logical not physical.
The syntax is: const type id[cexpr] = {value}

For example:
Placing data into ROM: const int table[16]={0,1,2...15}

48

Data Definitions

Placing a string into ROM: const char cstring[6]={"hello"}

Creating pointers to constants: const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:

The constant ID will be at 1CO00.
#ORG 0x1C00, 0x1COF
CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The
constant variable can be accessed in the code. This is a great way of storing constant
data in large programs. Variable length constant strings can be stored into program
memory.

A special method allows the use of pointers to ROM. This method does not contain extra
code at the start of the structure as does constant.

For example:
char rom commands[] = {“put|get|status]|shutdown”};

ircp] ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable
length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.
The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}

This method can only be used to initialize the program memory.

49

Data Definitions

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:

Writes data to program memory
write program eeprom(address,data);

Writes count bytes of data from dataptr to address in program memory.
write program memory (address, dataptr, count);

ieep] Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and
limitations regarding erase procedures. These functions can be used only on chips that
allow writes to program memory. The compiler uses the flash memory erase and write
routines to implement the functionality.

The data placed in program memory using the methods listed above can be read from
width the following functions:

Reads count bytes from program memory at address to RAM at dataptr.
read program memory (address, dataptr, count)

rep] Every fourth byte of data is read as 0x00

irco] Reads count bytes from program memory at the logical address to RAM at

dataptr.
read rom memory ((address, dataptr, count)

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a processor
register. This syntax is being proposed as a C extension for embedded use. The same
functionality is provided with the non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

50

Function Definition

FUNCTION DEFINITION

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt]}

U

Optional See Below Zero or more comma Zero or more Semi-
separated. colon separated. See
See Data Types Statements.

The qualifiers for a function are as follows:
e VOID

type-specifier

#separate

o #inline

o #int_..

When one of the above are used and the function has a prototype (forward declaration of
the function before it is defined) you must include the qualifier on both the prototype and
function definition.

A (non-standard) feature has been added to the compiler to help get around the
problems created by the fact that pointers cannot be created to constant strings. A
function that has one CHAR parameter will accept a constant string where it is

called. The compiler will generate a loop that will call the function once for each character
in the string.

Example:
void lcd putc(char c) {

}
lcd putc ("Hi There.");
SEE ALSO:

Overloaded Functions, Reference Parameters, Default Parameters, Variable
Parameters

51

Function Definition

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but
they must accept different parameters.

Here is an example of function overloading: Two functions have the same name but differ
in the types of parameters. The compiler determines which data type is being passed as
a parameter and calls the proper function.

This function finds the square root of a long integer variable.
long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.
float FindSquareRoot (float n) {

}

FindSquareRoot is now called. If variable is of long type, it will call the first
FindSquareRoot() example. If variable is of float type, it will call the second

FindSquareRoot() example.
result=FindSquareRoot (variable) ;

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability
of code and the efficiency of some inline procedures. The following two procedures are
the same. The one with reference parameters will be implemented with greater efficiency
when it is inline.

funct a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;

}
funct_a(&a, &b);
funct b (inté&x, intey) {
/*Reference params*/
if (x!=5)
y=x+3;
}

funct b(a,b);

52

Function Definition

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when
called.

int mygetc(char *c, int n=100) {

}

This function waits n milliseconds for a character over RS232. If a character is received, it
saves it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.
mygetc (&c) ; //gets a char, waits 100ms for timeout

mygetc (&c, 200); //gets a char, waits 200ms for a timeout

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI
requirements except that it does not require at least one fixed parameter as ANSI does.
The function can be passed any number of variables and any data types. The access
functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/%
stdarg.h holds the macros and va list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the
ellipsis (...), which must be the last parameter of the function. The ellipsis represents the
variable argument list. Second, it requires one more variable before the ellipsis (...).
Usually you will use this variable as a method for determining how many variables have
been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_start(al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += Xx;

53

Function Definition

//stop using the list
va_end(al);
return (sum) ;

Some examples of using this new function:
x=Sum(5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

54

Functional Overview

FUNCTIONAL OVERVIEW

12C

[2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-
based I2C™ and a software-based master I2C™ device. (For more information on the
hardware-based 12C module, please consult the datasheet for you target device; not all
PICs support 12C™)

Relevant Functions:
i2c_start() - Issues a start command when in the 12C master mode

i2c_write(data) - Sends a single byte over the 12C interface

i2c_read() - Reads a byte over the 12C interface

i2c_stop() - Issues a stop command when in the 12C master mode

i2c_poll() - Returns a TRUE if the hardware has received a byte in the buffer

i2c_transfer(address, wData, wCount, rData, rCount) - Performs an I2C transfer to
and from a device, function does start, restart, write, read, and stop 12C
operations; when in I2C master mode.

i2c_transfer_out(Address, wData, wCount) - Performs an 12C transfer to a device,
function does start, write, and stop 12C operations; when in 12C master mode.

Relevant Preprocessor:
#USE 12C - Configures the compiler to support I2C™ to your specifications

Relevant Interrupts:
#INT_SSP - 12C or SPI activity

#INT_BUSCOL - Bus Collision

#INT_I12C - 12C Interrupt (Only on 14000)

#INT_BUSCOL?2 - Bus Collision (Only supported on some PIC18's)
#INT_SSP2 - 12C or SPI activity (Only supported on some PIC18's)
irep] #INT_mi2c - Interrupts on activity from the master 12C module

rep] #INT_si2c - Interrupts on activity form the slave 12C module

55

Functional Overview

Relevant Include Files:
None - All functions built-in

Relevant getenv() Parameters:
I2C_SLAVE - Returns a 1 if the device has 12C slave H/W

[2C_MASTER - Returns a 1 if the device has a 12C master H/W

Example Code:

#define Device SDA PIN C3 // Pin defines

#define Device SLC PIN C4

#use i2c (master, sda=Device SDA, scl=Device SCL) // Configure Device as
Master

"

BYTE data; // Data to be transmitted
i2c_start(); // Issues a start command
when in

// the I2C master mode.
i2c_write (data); // Sends a single byte over
the I2C interface.
i2¢c_stop(); // Issues a stop command when

in the I2C master mode

ADC

These options let the user configure and use the analog to digital converter module. They
are only available on devices with the ADC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file. On some
devices there are two independent ADC modules, for these chips the second module is
configured using secondary ADC setup functions (Ex. setup_ADC?2).

Relevant Functions:
setup_adc(mode) - Sets up the a/d mode like off, the adc clock etc.

setup_adc_ports(value) - Sets the available adc pins to be analog or digital.
set_adc_channel(channel) - Specifies the channel to be use for the a/d call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control
the functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

[pcp] setup_adc2(mode) - Sets up the ADC2 module, for example the ADC clock and
ADC sample time.

56

Functional Overview
lpcp] setup_adc_ports2(ports, reference) - Sets the available ADC2 pins to be analog or
digital, and sets the voltage reference for ADC2.
rep] set_adc_channel2(channel) - Specifies the channel to use for the ADC2 input.

rep] read_adc2(mode) - Starts the sample and conversion sequence and reads the value
The mode can also control the functionality.

rep) adc_done() - Returns 1 if the ADC module has finished its conversion.
Relevant Preprocessor:
#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with

a 10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_AD - Interrupt fires when A/D conversion is complete.

INT_ADOF - Interrupt fires when A/D conversion has timed out.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
ADC_CHANNELS - Number of A/D channels.

ADC_RESOLUTION - Number of bits returned by read_adc

Example Code:
#DEVICE ADC=10

long value;
\
setup_adc (ADC_CLOCK_ INTERNAL) ; // enables the a/d module and

sets the clock to
// internal adc clock

setup adc_ports (ALL ANALOG) ; // sets all the adc pins to
analog

set_adc_channel (0) ; // the next read adc call will
read channel 0

delay us(10); // a small delay is required

after setting channel

// and before read
value=read adc(); // starts the conversion and
reads the result and

57

Functional Overview

// store it in value

read adc (ADC_START ONLY) ; // only starts the conversion
value=read adc (ADC_READ ONLY) ; // reads the result of the last
conversion

// and store it in value.
Assuming the device had

// allbit ADC module, value
will range between

// 0-3FF. If #DEVICE ADC=8 had
been used instead

// the result will yield O-FF.

If #DEVICE ADC=16

// had been used instead the
result will yield

// 0-FFCO

Analog Comparator
These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:
setup _comparator() - Enables and sets up the analog comparator module. The options
vary depending on the device; refer to the device's header file for details.

lrco] setup comparator filter() - Enables and sets up the analog compartor's digital
filter. The options vary depending on the device; refer to the device's header file
for details. Not all devices have a digital filter; refer to the device's header file to
determine if available.

pcp] setup comparator_mask() - Enables and sets up the analog comparator's output
blanking function. The options vary depending on the device; refer to the
device's header file for details. Not all devices have an output blanking function;
refer to the device's header file to determine if available.

lpco] sSetup comparator dac() - Enables and sets up the the common settings analog
comparator/DAC modules. The options vary depending on the device. Refer to
the device's header file for details. Not all devices have this function. Refer to
the device's header file to determine if available.

[pcp] Setup comparator_slope() - Sets up the analog comparator/DAC slope
compensation settings. The options vary depending on the device. Refer to the
device's header file for details. Not all devices have this function. Refer to the
device's header file to determine if available.

Relevant Preprocessor:
None

58

Functional Overview

Relevant Interrupts:
INT _COMP - Interrupt fires on a comparator change of state.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
COMP - Returns 1 if the device has a comparator.

Example Code:

setup comparator (A4 A5 NC NC);
if (Cl10oUT)

output low (PIN DO);

else

output high(PIN D1);

[PCD]
setup comparator (1, CXINB CXINA);
if (C10OUT)
output low (PIN DO);
else
output high (PIN DI1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC18 MCU. These functions will
only work with the MCP2515 CAN interface chip and PIC microcontroller units containing
either a CAN or an ECAN module. Some functions are only available for the ECAN
module and are specified by the work (ECAN) at the end of the description. The listed
interrupts are no available to the MCP2515 interface chip.

rep] These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC24, dsPIC30 and dsPIC33
MCUs. These functions will only work with the MCP2515 CAN interface chip and PIC
microcontroller units containing either a CAN or an ECAN module. Some functions are
only available for the ECAN module and are specified by the word (ECAN) at the end of
the description. The listed interrupts are not available to the MCP2515 interface chip.

Relevant Functions:

can_init(void); - Initializes the CAN module and clears all the filters and masks so that
all messages can be received from any ID.
iecp] Initializes the module to 62.5k baud for ECAN and 125k baud for CAN and
clears all the filters and masks so that all messages can be received from any ID.

59

Functional Overview

can_set_baud(void); - Initializes the baud rate of the CAN bus to125kHz, if using a 20
MHz clock and the default CAN-BRG defines, it is called inside the can_init()
function so there is no need to call it.

can_set_mode(CAN_OP_MODE mode); - Allows the mode of the CAN module to be
changed to configuration mode, listen mode, loop back mode, disabled mode, or
normal mode.

can_set_functional_mode (CAN_FUN_OP_MODE mode); - Allows the functional
mode of ECAN modules to be changed to legacy mode, enhanced legacy mode,
or first in firstout (fifo) mode. (ECAN)

can_set_id(int* addr, int32 id, int1 ext); - Can be used to set the filter and mask ID's to
the value specified by addr. It is also used to set the ID of the message to be
sent.

pco] can_set_id(intl6 *addr, int32 id, intl ext) - Can be used to set the filter and
mask ID's to the value specified by addr. Itis also used to set the ID of the
message to be sent on CAN chips.

ireo] can_set_buffer_id(BUFFER buffer,int32 id,intl ext) - Can be used to set the ID
of the message to be sent for ECAN devices. (ECAN)

ireo] can_get id(BUFFER buffer,intl ext) - Returns the ID of a received message.
can_get_id(int * addr, intl ext); - Returns the ID of a received message.

can_putd (int32id, int * data, int len, int priority, intl ext, intl rtr); - Constructs a
CAN packet using the given arguments and places it in one of the available
transmit buffers.

pcp] can_putd(int32id, int8 *data, int8 &len, struct rx_stat &stat) - Contructs a CAN
packet using the given arguments and places it in one of the available transmit
buffers.

can_getd (int32 & id, int * data, int & len, struct rx_stat & stat); - Retrieves a received
message from one of the CAN buffers and stores the relevant data in the
referenced function parameters.

pep] can_getd(int32 id, int8 *data, int8 &len, struct rx_stat &stat) - Retrieves a
received message from one of the CAN buffers and stores the relevant data in
the referenced function parameters.

can_enable_rtr(PROG_BUFFER b); - Enables the automatic response feature which
automatically sends a user created packet when a specified ID is received.
(ECAN)

can_disable_rtr(PROG_BUFFER b); - Disables the automatic response feature.
(ECAN)

60

[PCD]

Functional Overview

can_kbhit() - Returns a TRUE if valid CAN messages are available to be retrieved
from one of he receive buffers.

can_load_rtr (PROG_BUFFER b, int * data, int len); - Creates and loads the packet

that will automatically transmitted when the triggering ID is received. (ECAN)

can_enable_filter(long filter); - Enables one of the extra filters included in the ECAN

module. (ECAN)

can_disable_filter(long filter); - Disables one of the extra filters included in the ECAN

module. (ECAN)

can_associate_filter_to_buffer(CAN_FILTER_ASSOCIATION_BUFFERS

buffer, CAN_FILTER_ASSOCIATION filter); - Used to associate a filter to a
specific buffer. This allows only specific buffers to be filtered and is available in
the ECAN module. (ECAN)

can_associate_filter_to_mask(CAN_MASK_FILTER_ASSOCIATE

mask,CAN_FILTER_ASSOCIATION filter); - Used to associate a mask to a
specific buffer. This allows only specific buffer to have this mask applied. This
feature is available in the ECAN module.

can_fifo_getd(int32 &id,int * data,int &len,struct rx_stat & stat); - Retrieves the next

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

buffer in the fifo buffer. Only available in the ECON module while operating in fifo
mode. (ECAN)

can_fifo_getd(int32 &id,,int8 * data,int8 &len, rx_stat & stat); - Retrieves the next
buffer in the fifo buffer. Only available in the ECON module while operating in fifo
mode. (ECAN)

can_tbe() - Returns TRUE if a transmit buffer is available to send more data.
can_abort() - Aborts all pending transmissions.

can_enable_b_transfer(BUFFER b) - Sets the specified programmable buffer to be
a transmit buffer. (ECAN)

can_enable_b_receiver(BUFFER b) - Sets the specified programmable buffer to be
a receive buffer. By default, all programmable buffers are set to be receive
buffers. (ECAN)

can_enable_rtr(BUFFER b) - Enables the automatic response feature. (ECAN)
can_disable_rtr(BUFFER b) - Disables the automatic response feature. (ECAN)

can_load_rtr(BUFFER b, int8 *data, int8 len) - Creates and loads the packet that
will automatically be transmitted when the triggering ID is received. (ECAN)

61

Functional Overview

pep] can_set_buffer_size(int8 size) - Set the number of buffers to use. Size can be 4,
6, 8, 12, 16, 24 and 32. By default can_init() sets size to 32. (ECAN)

rep] can_enable filter(CAN_FILTER_CONTROLfilter) - Enables one of the acceptance
filters included in the ECAN module. (ECAN)

rep] can_disable filter(CAN_FILTER_CONTROLfilter) - Disables one of the
acceptance filters included in the ECAN module. (ECAN)

eep] can_trb0_putd(int32 id, int8 *data, int8 len, int8 pri, intl ext, int rtr) - Contructs a
CAN packet using the given arguments and places it in transmit buffer 0. Similar
functions available for all transmit buffers 0-7. Buffer must be made a transmit
buffer with can_enable_b_transfer() function before function can be use. (ECAN)

irco] can_enable_interrupts(INTERRUPT setting) - Enables specified interrupt
conditions that cause the #INT_CANL1 interrupt to be tirggered. Available
options:
TB - Transmit Buffer interrupt (ECAN)
RB - Receive Buffer interrupt (ECAN)
RXQV - Receive Buffer Overflow interrupt (ECAN)
FIFO - FIFO Almost Full interrupt (ECAN)
ERR - Error interrupt (ECAN)
WAK - Wake-Up interrupt (ECAN)
IVR - Invalid Message Received interrupt (ECAN)
RXO0 - Receive Buffer 0 interrupt
RX1 - Receive Buffer 1 interrupt
TXO0 - Transmit Buffer O interrupt
TX1 - Transmit Buffer 1 interrupt
TX2 - Transmit Buffer 2 interrupt

ireo] can_disable_interrupts(INTERRUPT setting) - Disable specified interrupt
conditions so they do not cause the #INT_CANL1 interrupt to be triggered.
Available options are the same as for the can_enable_interrupts() function. By
default, all conditions are disabled.

rep) can_config_ DMA(void) - Configures the DMA buffers to use with the ECAN
module. Itis called inside the can_init() function so there is no need to call it.
(ECAN)

For PIC microcontrollers that have two CAN or ECAN modules, all the above functions
are available for the second module, and they begin with can2 instead of can.
can2_init(); or can2_kbhit();

Relevant Preprocessor:
None

62

Functional Overview

Relevant Interrupts:
#int_canirx - This interrupt is triggered when an invalid packet is received on the CAN.

#int_canwake - This interrupt is triggered when the PIC is woken up by activity on the
CAN.

#int_canerr - This interrupt is triggered when there is an error in the CAN module.
#int_cantxO0 - This interrupt is triggered when transmission from buffer 0 has completed.
#int_cantx1 - This interrupt is triggered when transmission from buffer 1 has completed.
#int_cantx2 - This interrupt is triggered when transmission from buffer 2 has completed.
#int_canrxO0 - This interrupt is triggered when a message is received in buffer 0.
#int_canrx1 - This interrupt is triggered when a message is received in buffer 1.

rep] #int_canl - Interrupt for CAN or ECAN module 1. This interrupt is triggered when
one of the conditions set by can_enable_interrupts() is met.

lpcp] #int_can2 - Interrupt for CAN or ECAN moduel 2. This interrupt is triggered when
one of the conditions set by the can2_enable_interrupts() is met. This interrupt is only
available on devices that have two CAN or ECAN modules.

Relevant Include Files:
can-mcp2510.c - Drivers for the MCP2510 and MCP2515 interface devices.

can-18xxx8.c - Drivers for the built-in CAN module.
can-18F4580.c - Drivers for the built-in ECAN module.
trep] can-dsPIC30.c - Drivers for the built-in CAN module on dsPIC30F devices.

rep] can-PIC24.c - Drivers for the built-in ECAN mdoule on PIC24HF and dsPIC33FJ
devices.

Relevant getenv() Parameters:
None

Example Code:
can_init(); // initializes the CAN bus
can_putd(0x300,data, 8,3, TRUE,FALSE); // places a message on the CAN
bus with ID=0x300
// and eight bytes of data pointed
to by "data",

63

Functional Overview

// the TRUE create an extended ID,
the FALSE
// creates
can_getd(ID,data, len,stat); // retrieves a message from the
CAN bus storing the
// ID in the ID variable, the data
in the array
// pointed to by "data", the number
of data bytes
// in len, and statistics about the
data in
// the stat structure.

CCP

These options lets to configure and use the CCP module. There might be multiple CCP
modules for a device. These functions are only available on devices with CCP hardware.
They operate in 3 modes: capture, compare and PWM. The source in capture/compare
mode can be timerl or timer3 and in PWM can be timer2 or timer4. The options available
are different for different devices and are listed in the device header file. In capture mode
the value of the timer is copied to the CCP_X register when the input pin event occurs. In
compare mode it will trigger an action when timer and CCP_x values are equal and in
PWM mode it will generate a square wave.

Relevant Functions:
setup_ccpl(mode) - Sets the mode to capture, compare or PWM.

set_pwml_duty(value) - The value is written to the pwm1 to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CCP1 - Interrupt fires when capture or compare on CCP1.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
CCP1 - Returns 1 if the device has CCP1

Example Code:
#int ccpl
void isr ()
{
rise=CCP_1; // CCP_1 is the time the pulse went high

64

Functional Overview

fall=CCP2; // CCP_2 is the time the pulse went low
pulse width=fall-rise; // pulse width
}

setup_ ccpl (CCP_CAPTURE RE) ; // Configure CCPl to capture rise
setup ccp2 (CCP_CAPTURE FE); // Configure CCP2 to capture fall
setup_timer 1(T1 INTERNAL); // Start timer 1

Some devices also have fuses which allows to multiplex the ccp/pwm on different pins.
Be sure to check the fuses to see which pin is set by default, as well as fuses to
enable/disable pwm outputs.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information while
the program is running and provides statistics, logging and tracing of it's execution. This is
accomplished by using a simple communication method between the processor and the ICD with
minimal side-effects to the timing and execution of the program. Another benefit of code profile
versus in-circuit debugging is that a program written with profile support enabled will run correctly
even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be included
in the project being compiled and profiled. Doing this adds the proper code profile run-time support
on the microcontroller.

See the help file in the Code Profile tool for more help and usage examples.

Relevant Functions:
profileout() - Send a user specified message or variable to be displayed or logged by the code
profile tool.

Relevant Preprocessor:
#use profile() - Global configuration of the code profile run-time on the microcontroller.

#profile - Dynamically enable/disable specific elements of the profiler.

Relevant Interrupts:

The profiler can be configured to use a microcontroller's internal timer for more accurate
timing of events over the clock on the PC. This timer is configured using the #profile pre-
processor command.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

65

Functional Overview

Example Code:
finclude <18F4520.h>

#use delay(crystal=10MHz, clock=40MHz)
#profile functions, parameters
void main (void)
{
int adc;
setup_adc (ADC_CLOCK_INTERNAL) ;
set adc_ channel (0) ;

for(;:)

{
adc = read adc();
profileout (adc) ;
delay ms(250);

Confiquration Memory

The Configuration Memory is readable and writable on all PIC18, PIC24, dsPIC30 and
dsPIC33 devices. Enhanced 16 devices have the configuration memory that is readable
and the user ID is readable and writable..

ireo] The Configuration Memory contains the configuration bits for items such as the
oscillator mode, watchdog timer enable, etc. These configuration bits are set by the CCS
C Compiler usually through a #fuse. CCS provides an API that allows for these bits to be
changed in run-time.

Relevant Functions:
write_configuration_memory(ramaddress, count) - Writes count bytes, no erase
needed.

write_configuration_memory(offset,ramaddress, count) - Writes count bytes, no
erase needed starting at byte address offset.

write_configuration_memory(ramPtr, n); - Writes n bytes to configuration from ramPtr,
no erase needed.

pcp] Write_configuration_memory(offset, ramPtr, n); - Read n bytes of configuration
memory, save to ramPtr.

read_configuration_memory(ramaddress,count) - Read count bytes of configuration
memory.

66

Functional Overview

rep] read_configuration_memory(ramPtr, n); - Read n bytes of configuration memory
is set through a #FUSE.

read_device_info() - Read count bytes from Device Information Area memory.

read_config_info() - Read count bytes from Device Configuration Information memory.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#intl6 data=0xc32;

write configuration memory(data,2); // writes 2 bytes to the config
memory

CRC

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC
checksum generator in select PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The
checksum is a unique number associated with a message or a block of data containing
several bytes. The built-in CRC module has the following features:

e Programmable bit length for the CRC generator polynomial. (up to 32 bit length)
Programmable CRC generator polynomial.
Interrupt output.
4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.
Programmed bit lenght for data input. (32-bit CRC Modules Only)

Relevant Functions:
setup_crc(polynomial) - This will setup the CRC polynomial.

crc_init(data) - Sets the initial value used by the CRC module.

crc_calc(data) - Returns the calculated CRC value.

67

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CRC - On completion of CRC calculation.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
intle datal[8];
intl6 result;

setup crc(1l5, 3, 1); //CRC Polynomial is X16+X15+X3+X1 +1
//or polynomial=8005h
crc_init (OXFEEE) ; //Starts the CRC accumulator outo f OxFEEE

result=crc calc(&data[0],8): //Calculates the CRC

DAC

These options let the user configure and use the digital to analog converter module. They
are only available on devices with the DAC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_dac(divisor) - Sets up the DAC e.g. Reference voltages.

dac_write(value) - Writes the 8-bit value to the DAC module.
lpcp] setup_dac(mode, divisor) - Sets up the d/a mode e.g. Right enable, clock divisor.
rep] dac_write(channel, value) - Writes the 16-bit value to the specified channel.

Relevant Preprocessor:
#USE DELAY - Must add an auxiliary clock in the #use delay preprocessor.
For example: #USE DELAY/(clock=20M, Aux: crystal=6M, clock=3M)

Relevant Interrupts:
None

68

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
int8 1i=0;
setup dac (DAC VSS VDD);
while (TRUE) {
itt;
dac_write(i);

}

[PCD]
intle 1 = 0;
setup dac (DAC_RIGHT ON, 5); // enables the d/a module with right
channel
// enabled and a division of the
clock by 5
While (1) {
i++;
dac_write (DAC RIGHT, 1i); // writes 1 to the right DAC channel
}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the
user read and write to the data eeprom memory. These functions are only available in
flash chips.

Relevant Functions:
read _eeprom(address) - Reads the data EEPROM memory location

write _eeprom(address, value) - Erases and write value to data EEPROM location
address. Except for PCB devices with EEPROM, such as PIC12F519; it only writes the
value.

erase eeprom(address) - Erases a row of the EEPROM of Flash memory. Only
available on PCB devices with EEPROM, such as PIC12F599.

read eeprom(address, [N]) - Reads N bytes of data EEPROM starting at memory
location address. The maximum return size is int64.

read eeprom(address, [variable]) - Reads from EEPROM to fill variable starting at
address.

read eeprom(address, pointer, N) - Reads N bytes, starting at address, to pointer.
write _eeprom(address, value) - Writes value to EEPROM address.

69

Functional Overview

write _eeprom(address, pointer, N) - Writes N bytes to address from pointer

Relevant Preprocessor:
#ROM address={list} - Can also be used to put data EEPROM memory data into the hex
file.

write _eeprom = noint - Allows interrupts to occur while the write_eeprom() operations is
polling the done bit to check if the write operations has completed. Can be used as long
as no EEPROM operations are performed during an ISR.

Relevant Interrupts:
INT EEPROM - Interrupt fires when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in.

Relevant getevn() Parameters:
DATA EEPROM - Size of data EEPROM memory.

iExampIe Code:

For 18F452
#rom 0xf00000={1,2,3,4,5} //inserts this data into the hex file.
//The data eeprom address differs for
different

// family of devices. Please refer to the
//programming specs to find the value for
the device.

write eeprom(0x0,0x12); //write 0x12 to data eeprom location O
value-read eeprom (0x) // reads data eeprom location 0x0
returns 0x12

#ROM 0x007FFC00={1,2,3,4,5} //Inserts this data into the hex file.
The data
//EEPROM address differs between PICs.
//Please refer to the device editor for

device

//specific values.
write eeprom(10,0x1337) //Writes 0x1337 to data EEPROM location
10.
value=read eeprom(10); //Reads data EEPROM location 10 returns
0x1337

70

Functional Overview

DCI

DCl is an interface that is found on several dsPIC devices in the 30F and the 33FJ
families. It is a multiple-protocol interface peripheral that allows the user to connect to
many common audio codecs through common (and highly configurable) pulse code
modulation transmission protocols. Generic multichannel protocols, 12S and AC’97 (16 &
20 bit modes) are all supported.

Relevant Functions:
setup_dci(configuration, data size, rx config, tx config, sample rate);- Initializes the DCI
module.

setup_adc_ports(value) - Sets the available ADC pins to be analog or digital.
set_adc_channel(channel) - Specifies the channelt o be used for the A/D call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control
the functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

Relevant Preprocessor:

#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with
a 10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_DCI - Interrupt fires on a number (user configurable) of data words received.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
signed intl6é left channel, right channel;

dci initializes((I2S MODE|DCI MASTER|DCI CLOCK OUT|

SAMPLE RISING EDGE |UNDERFLOW LAST|MULTI DEVICE BUS),DCI 1WORD FRAME |
DCI 16BIT WORD|DCI 2WORD INTERRUPT, RECEIVE SLOTO|RECEIVE SLOTI1,
TRANSMIT SLOTO|TRANSMIT SLOT1, 6000);

dci start();

while (1)

{

71

Functional Overview

dci read(&left channel, &right channel);
dci write(&left channel, &right channel);

}

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the
CPU and its peripherals without the CPU's assistance. The transfer takes place between
peripheral data registers and data space RAM. The module has 8 channels and since
each channel is unidirectional, two channels must be allocated to read and write to a
peripheral. Each DMA channel can move a block of up to 1024 data elements after it
generates an interrupt to the CPU to indicate that the lock is available for processing.
Some of the key features of the DMA module are:

Eight DMA Channels.

Byte or word transfers.

CPU interrupt after half or full block transfer complete.

One-Shot or Auto-Repeat block transfer modes.

Ping-Pong Mode (automatic switch between two DSPRAM start addresses after
each block transfer is complete).

Relevant Functions:
setup_dma(channel, peripheral,mode) - Configures the DMA module to copy data
from the specified peripheral to RAM allocated for the DMA channel.

dma_start(channel, mode,address) - Starts the DMA transfer for the specified channel
in the specified mode of operation.

dma_status(channel) - This function will return the status of the specified channel in the
DMA module.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_DMAX - Interrupt on channel X after DMA block or half block transfer.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

72

Functional Overview

Example Code:

setup dma(1,DMA IN SIP1,DMA BYTE); // Setup channel 1 of the DMA
module to

// read the SPI1 channel in byte
mode.
dma start (1,DMA CONTINUOUS|DMA PING PONG, 0x2000);

// Start the DMA channel with the
DMA

// RAM address of 0x2000

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the
“‘modulator signal”) with a carrier signal to produce a modulated output. Both the carrier
and the modulator signals are supplied to the DSM module, either internally from the
output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator
signals and then it is provided to the MDOUT pin. Using this method, the DSM can
generate the following types of key modulation schemes:

e Frequency Shift Keying (FSK)

¢ Phase Shift Keying (PSK)

e On-Off Keying (OOK)

Relevant Functions: (8 bit or 16 bit depending on the device)
setup_dsm(mode,source,carrier) - Configures the DSM module and selects the source
signal and carrier signals.

setup_dsm(TRUE) - Enables the DSM module.
setup_dsm(FALSE) - Disables the DSM module.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

73

Functional Overview

Example Code:
setup dsm(DSM _ENABLED|DSM OUTPUT ENABLED,DSM SOURCE UARTI,
DSM_CARRIER HIGH VSS|DSM CARRIER LOW OC1);
//Enables DSM module with the output enabled and selects UART1
//as the source signal and VSS as the high carrier signal and OCl's
//PWM output as the low carrier signal.

if (input (PIN_BO0)) //Disable DSM module
setup dsm(FALSE) ;

else
setup_dsm(TRUE) ; //Enable DSM module

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method
is required to access the RAM above 30K. This extended RAM is organized into pages
of 32K bytes each, the first page of extended RAM starts on page 1.

Relevant Functions:
write_extended_ram(p,addr,ptr,n); - Writes n bytes from ptr to extended RAM page p
starting at address addr.

read_extended_ram(p,addr,ptr,n); - Reads n bytes from extended RAM page p starting
a address addr to ptr.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
write extended ram(l,0x100,WriteData,8); //Writes 8 bytes from
WriteData to
//addresses 0x100 to 0x107 of
//extended RAM page 1.
read extended ram(1l,0x100,ReadData, 8); //Reads 8 bytes from addresses
0x100
//to 0x107 of extended RAM page

//to ReadData.

74

Functional Overview

External Memory

Some PIC18 devices have the external memory functionality where the external memory
can be mapped to external memory devices like (Flash, EPROM or RAM). These
functions are available only on devices that support external memory bus.

General Purpose I/O

These options let the user configure and use the I/O pins on the device. These functions
will affect the pins that are listed in the device header file.

Relevant Functions:
output_high(pin) - Sets the given pin to high state.

output_low(pin) - Sets the given pin to the ground state.

output_float(pin) - Sets the specified pin to the input mode. This will allow the pin to float
high to represent a high on an open collector type of connection.

output_x(value) - Outputs an entire byte to the port.
output_bit(pin,value) - Outputs the specified value (0,1) to the specified 1/0O pin.
input(pin) - The function returns the state of the indicated pin.

input_state(pin) - This function reads the level of a pin without changing the direction of
the pin as INPUT() does.

set_tris_x(value) - Sets the value of the 1/O port direction register. A '1"is an input and '0'
is for output.

input_change_x() - This function reads the levels of the pins on the port, and compares
them to the last time they were read to see if there was a change, 1 if there was,
0 if there was not.

Set_open_drain_x(value) - This function sets the value of the 1/0O port Open-Drain register. A |
makes the output open-drain and 0 makes the output push-pull.

set_input_level_x(value) - This function sets the value of the 1/O port Input Level Register. A1
sets the input level to ST and O sets the input level to TTL.

[pco] set_open_drain_x() - Sets the value of the I/O port Open-Drain Control register. A 'l' sets it
as an open-drain output, and a 'O’ sets it as a digital output.

75

Functional Overview

Relevant Preprocessor:

#USE STANDARD_10(port) - This compiler will use this directive be default and it will
automatically inserts code for the direction register whenever an I/O function like
output_high() or input() is used.

#USE FAST_IO(port) - This directive will configure the I/O port to use the fast method of
performing I/O. The user will be responsible for setting the port direction register
using the set_tris_x() function.

#USE FIXED_IO (port_outputs=;in,pin?) - This directive set particular pins to be used an
input or output, and the compiler will perform this setup every time this pin is
used.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PIN:pb ----Returns a 1 if bit b on port p is on this part

Example Code:
#use fast _io(b)\

Int8 Tris value= 0x0F;

intl Pin value;

set _tris b(Tris value); //Sets B0:B3 as input and B4:B7 as output

output_high (PIN B7); //Set the pin B7 to High

If (input (PIN BO)) { //Read the value on pin B0, set B7 to low if
//pin BO is high

output high (PIN B7);

}

Input Capture

These functions allow for the configuration of the input capture module. The timer source
for the input capture operation can be set to either Timer 2 or Timer 3. In capture mode
the value of the selected timer is copied to the ICXBUF register when an input event
occurs and interrupts can be configured to fire as needed.

Relevant Functions:
setup_capture(x, mode) - Sets the operation mode of the input capture module x

76

Functional Overview

get_capture(x, wait) - Reads the capture event time from the ICxBUF result register. If
wait is true, program flow waits until a new result is present. Otherwise the oldest
value in the buffer is returned.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_ICx - Interrupt fires on capture event as configured

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup timer3(TMR INTERNAL|TMR DIV BY 8);
setup capture (2, CAPTURE FE|CAPTURE T IMER3) ;
while (TRUE) {
timerValue=get capture (2, TRUE);
printf ("A module 2 capture event occured: %LU", timerValue);

}

Internal LCD

Some families of PIC microcontrollers can drive a glass segment LCD directly, without
the need of an LCD controller. For example, the PIC16C92X, PIC16F91X, and
PIC16F193X series of chips have an internal LCD driver module.

Relevant Functions:

setup_lcd(mode, prescale, [segments]) - Configures the LCD Driver Module to use the
specified mode, timer prescaler, and segments. For more information on valid
modes and settings, see the setup_lcd() manual page and the *.h header file for
the PIC micro-controller being used.

lcd_symbol(symbol, segment_b7 ... segment_b0) - The specified symbol is placed on
the desired segments, where segment_b7 to segment_b0 represent SEGXX pins
on the PIC micro-controller. For example, if bit 0 of symbol is set, then
segment_bO is set, and if segment_b0 is 15, then SEG15 would be set.

Icd_load(ptr, offset, length) - Writes length bytes of data from pointer directly to the
LCD segment memory, starting with offset.

77

Functional Overview

Icd_contrast (contrast) - Passing a value of 0 — 7 will change the contrast of the LCD
segments, 0 being the minimum, 7 being the maximum.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_LCD - LCD frame is complete, all pixels displayed

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
LCD - Returns TRUE if the device has an Internal LCD Driver Module.

Example Code:
// How each segment of
the LCD is set
// (on or off) for the
ASCII digits to 9.
byte CONST DIGIT MAP[10]={0xFC, 0x60, OxDA, 0xF2, 0x66, 0xB6, OxBE,
O0xEO, OxFE, OxE6};

// Define the segment
information for the
//first digit of the LCD
#define DIGITL COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18
// Displays the digits 0
to 9 on the first
//digit of the LCD.

for(i = 0; 1 <= 9; i++) {
lcd symbol (DIGIT_MAP[i], DIGIT1);
delay ms(1000);

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal
oscillator. Some chips have a constant 4 Mhz factory calibrated internal oscillator. The
value is stored in some location (mostly the highest program memory) and the compiler
moves it to the osccal register on startup. The programmers save and restore this value
but if this is lost they need to be programmed before the oscillator is functioning properly.
Some chips have factory calibrated internal oscillator that offers software selectable
frequency range(from 31Kz to 8 Mhz) and they have a default value and can be switched

78

Functional Overview

to a higher/lower value in software. They are also software tunable. Some chips also
provide the PLL option for the internal oscillator.

rep] Two internal oscillators are present in PCD compatible devices, a fast RC and slow
RC oscillator circuit. In many cases (consult the target datasheet or family datasheet for
target specifics). The fast RC oscillator may be connected to a PLL system, allowing a
broad range of frequencies to be selected. The Watchdog timer is derived from the slow
internal oscillator.

Relevant Functions:

setup_oscillator(mode, finetune) - Sets the value of the internal oscillator and also
tunes it. The options vary depending on the chip and are listed in the device
header files.

setup_oscillator() - Explicitly configures the oscillator.

Relevant Preprocessor:
irep] #FUSES - Specifies the values loaded in the device configuration memory. May be
used to setup the oscillator configuration.

Relevant Interrupts:
INT_OSC_FAIL or INT_OSCEF - Interrupt fires when the system oscillator fails and the
processor switches to the internal oscillator.

irep] #INT_OSCFAIL - Interrups on oscillator failure

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
irecp] CLOCK - Returns the clock speed specified by #use delay()

irco] FUSE_SETxxx - Returns 1 if the fuse xxxx is set.

Example Code:

For PIC18F8722
setup _oscillator (OSC_32MHZ); //sets the internal oscillator to 32Mhz
(PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is
specified in the #use delay(clock=xxx) directive the compiler automatically sets up the
oscillator. The #use delay statements should be used to tell the compiler about the
oscillator speed.

79

Functional Overview

Interrupts

The following functions allow for the control of the interrupt subsystem of the
microcontroller. With these functions, interrupts can be enabled, disabled, and cleared.
With the preprocessor directives, a default function can be called for any interrupt that
does not have an associated ISR, and a global function can replace the compiler
generated interrupt dispatcher.

Relevant Functions:
disable_interrupts() - Disables the specified interrupt.
enable_interrupts() - Enables the specified interrupt.

ext_int_edge() - Enables the edge on which the edge interrupt should trigger. This can
be either rising or falling edge.

clear_interrupt() - This function will clear the specified interrupt flag. This can be used if
a global isr is used, or to prevent an interrupt from being serviced.

interrupt_active() - This function checks the interrupt flag of specified interrupt and
returns true if flag is set.

interrupt enabled() - This function checks the interrupt enable flag of the specified
interrupt and returns TRUE if set.

Relevant Preprocessor:
#DEVICE HIGH_INTS= - This directive tells the compiler to generate code for high
priority interrupts.

#INT_XXX fast - This directive tells the compiler that the specified interrupt should be
treated as a high priority interrupt.

reo] #INT_XXX level=x - x is an int 0-7, that selects the interrupt priority level for that
interrupt.

pep] #INT XXX fast - This directive makes use of shadow registers for fast register save.
This directive can only be used in one ISR

Relevant Interrupts:

#int_default - This directive specifies that the following function should be called if an
interrupt is triggered but no routine is associated with that interrupt.

#int_global - This directive specifies that the following function should be called whenever
an interrupt is triggered. This function will replace the compiler generated
interrupt dispatcher.

#int_xxx - This directive specifies that the following function should be called whenever
the xxx interrupt is triggered. If the compiler generated interrupt dispatcher is
used, the compiler will take care of clearing the interrupt flag bits.

80

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#int timerO
void timerOinterrupt () //#int_timer associates the following
function with
//the interrupt service routine that should

be called.

enable interrupts(TIMERO); //enables the timer0O interrupt
disable interrupts(TIMERO); //disables the timer0 interrupt
clear interrupt (TIMERO) ; //clears the timerO interrupt flag.

Low Voltage Detect

These functions configure the high/low voltage detect module. Functions available on the
chips that have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode) - Sets the voltage trigger levels and also the mode
(below or above in case of the high/low voltage detect module). The options vary
depending on the chip and are listed in the device header files.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_LOWVOLT - Interrup fires on low voltage detect

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
For PIC18F8722
setup low volt detect (LVD 36 |LVD TRIGGER ABOVE) ;
// sets the trigger level as 3.6
volts and
// trigger direction as above. The
interrupt

81

Functional Overview

// if enabled is fired when the
voltage is
// above 3.6 volts.

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output
compare has three modes of functioning. Single compare, dual compare, and PWM. In
single compare the output compare module simply compares the value of the OCxR
register to the value of the timer and triggers a corresponding output event on match. In
dual compare mode, the pin is set high on OCxR match and then placed low on an
OCxRS match. This can be set to either occur once or repeatedly. In PWM mode the
selected timer sets the period and the OCXRS register sets the duty cycle. Once the OC
module is placed in PWM mode the OCXR register becomes read only so the value
needs to be set before placing the output compare module in PWM mode. For all three
modes of operation, the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:
setup_comparex (x, mode) - Sets the mode of the output compare / PWM module x

set_comparex_time (X, ocr, [ocrs]) - Sets the OCR and optionally OCRS register
values of module x.

set_pwm_duty (X, value) - Sets the PWM duty cycle of module x to the specified value
Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx - Interrup fires after a compare event has occurred.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
//Outputs a 1 second pulse on the

OC2 pin

//using dual compare mode on a PIC
with

//an instruction clock of (20Mhz/4)
intl6é OCR_2=0x1000; //Start pulse when timer is at
0x1000

82

Functional Overview

intl5 OCRS_2=0x5C4B; //End pulse after 0x04C4B timer

counts
// (0x1000+0x04C4B
//(lsec)/[(4/20000000*256]=0x04C4B
//256-timer prescaler value (set in

code)

set compare time (2, OCR 2,0CRS_2);

setup compare (2, COMPARE SINGLE PULSE|COMPARE TIMERS3) ;

setup timer3 (TMR INTERNAL|TMR DIV BY 256);

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator
(MCPWM) module. The MCPWM is used to generate a periodic pulse waveform which is
useful is motor control and power control applications. The options for these functions
vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_motor_pwm(pwm,options, timebase); - Configures the motor control PWM
module.

set_motor_pwm_duty(pwm,unit,time) - Configures the motor control PWM unit duty.

set_motor_pwm_event(pwm,time) - Configures the PWM event on the motor control
unit.

set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime); -
Configures the motor control PWM unit.

get_motor_pwm_event(pwm); - Returns the PWM event on the motor control unit.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWM1 - PWM Timebase Interrupt

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
//Sets up the motor PWM module
setup motor pwm(1l,MPWM FREE RUN|MPWM SYNC OVERRIDES, timebase);

83

Functional Overview

//Sets the PWM1l, Group 1 duty cylce value to
0x55
set motor pwm duty(l,1,0x55);

//Sets the motor PWM event
set motor pwm event (pwm, time) ;

//Enable pwm pair
set motor unit(1l,1,mpwm ENABLE,O0,O0);

//Enables pwml, Group 1 in complementary
mode,

//no deadtime.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-
bit/16-bit I/O module specifically designed to communicate with a wide variety of parallel
devices. Key features of the PMP module are:
e 8or 16 Datalines
e Upto 16 or 32 Programmable Address Lines
e Upto 2 Chip Select Lines
Programmable Strobe option
Address Auto-Increment/Auto-Decrement
Programmable Address/Data Multiplexing
Programmable Polarity on Control Signals
Legacy Parallel Slave(PSP) Support
Enhanced Parallel Slave Port Support
Programmable Wait States

Relevant Functions:
setup_psp (options,address_mask) - This will setup the PSP module for various mode
and specifies which address lines to be used.

setup_pmp_csx(options,[offset]) - Sets up the Chip Select X Configuration, Mode and
Base Address registers.

[pcp] setup_pmp (options,address_mask) - This will setup the PMP/EPMP module for
various mode and specifies which address lines to be used.

setup_psp_cs(options) - Sets up the Chip Select X Configuration and Mode registers.
psp_output_full() - This will return the status of the output buffers.
irep] pmp_address(address) - Configures the address register of the PMP module with

the destination address during Master mode operation.

84

Functional Overview

ieep] pmp_input_full () - This will return the status of the input buffers.

rep] psp_input_full() - This will return the status of the input buffers.

ieep] pmp_output_full() - This will return the status of the output buffers.

ieep] pmp_overflow () - This will return the status of the output buffer underflow bit.
irep] pmp_read() - Reads a byte of data.

pcp] psp_read(address)/ psp_read() - psp_read() will read a byte of data from the next
buffer location and psp_read (address) will read the buffer location address.

pep] pmp_write (data) - Write the data byte to the next buffer location.

pco] psp_write(address,data)/ psp_write(data) - This will write a byte of data to the next
buffer location or will write a byte to the specified buffer location.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PMP - Interrupt on read or write strobe

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup pmp (PAR ENABLE | // Sets up Master mode with
// address lines PMAQO:PMA7
PAR_MASTER MODE 1 |
PAR STOP IN IDLE, OxOFF);

if (pmp_output full())
{
pmp write (next byte);
}

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are
only available on devices equipped with PWM. The options for these functions vary
depending on the chip and are listed in the device header file.

85

Functional Overview

Relevant Functions:
setup_power_pwm(config) - Sets up the PWM clock, period, dead time etc.

setup_power_pwm_pins(module x) - Configure the pins of the PWM to be in
Complementary, ON or OFF mod.

set_power_pwmx_duty(duty) - Stores the value of the duty cycle in the PDCXL/H
register. This duty cycle value is the time for which the PWM is in active state.

set_power_pwm_override(pwm,override,value) - This function determines whether the
OVDCONS or the PDC registers determine the PWM output .

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWMTB - PWM Timebase Interrupt (Only available on PIC18XX31)

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
long duty cycle, period;

// Configures PWM pins to be
ON, OFF
// or in Complimentary mode.

setup power pwm pins (PWM COMPLEMENTARY ,PWM OFF, PWM OFF,
PWM _OFF ;
// Sets up PWM clock , postscale
and
// period. Here period is used
to set the
// PWM Frequency as follows:
// Frequency=Fosc/ (4* (period+1)
// *postscale)

setup power pwm(PWM CLOCK DIV 4|PWM FREE RUN,1,0,period,0,1,0);
set power pwm0 duty(duty cycle)); // Sets the duty cycle of
the PWM 0,1 in

// Complementary mode

86

Functional Overview

Program EEPROM

The Flash program memory is readable and writable in some chips and is just readable in some.
These options allows the user to read and write to the Flash program memory. These functions are
only available in Flash chips.

Relevant Functions:

read_program_eeprom(address) - Reads the program memory location (16-bit or 32-bit
depending on the device).

write_program_eeprom(address, value) - Writes value to program memory location address.
erase_program_eeprom(address) - Erases FLASH_ERASE_SIZE bytes in program memory.

write_program_memory(address,dataptr,count) - Writes count bytes to program memory from
dataptr to address. When address is a mutiple of FLASH_ERASE_SIZE an erase is also
performed.
rcp] When address is a mutiple of FLASH_ERASE_SIZE an erase is also performed.

read_program_memory(address,dataptr,count) - Read count bytes from program memory at
address to dataptr.

read_calibration_memory(cal_word) - Read one of the calibration words from calibration memory
on MCP191xx devices.

[ecp] read_rom_memory(address,dataptr,count) - Reads count bytes from program memory
from address.

Relevant Preprocessor:
#ROM address={list} - Can be used to put program memory data into the hex file.

#DEVICE(WRITE_EEPROM=ASYNC) - Can be used with #DEVICE to prevent the write function
from hanging. When this is used make sure the eeprom is not written both inside and outside the
ISR.

Relevant Interrupts:
INT_EEPROM - Interrupts fire when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
PROGRAM_MEMORY - Size of program memory.

READ_PROGRAM - Returns 1 if program memory can be read.
FLASH_WRITE_SIZE - Smallest number of bytes written in Flash.
FLASH_ERASE_SIZE - Smallest number of bytes erased in Flash.

87

Functional Overview

rco) MIN_FLASH_WRITE - Smallest number of bytes that can be written to Flash with
write_program_memory() function.

Example Code:
For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5} //inserts this data into the hex
file.

erase program eeprom(0x1000); //erases 64 bytes starting at
0x1000

write program eeprom(0x1000,0x1234); //writes 0x1234 to 0x1000
value=read program eeprom(0x1000); //reads 0x1000 returns 0x1234
write program memory (0x1000,data,8); //of 64 and writes 8 bytes from
data to 0x1000

read program memory (0x1000,value,8); //reads 8 bytes to value from
0x1000

erase program eeprom(0x1000) ; //erases 64 bytes starting at
0x1000

write program memory (0x1010,data,8); //writes 8 bytes from data to
0x1000

read program memory (0x1000,value, 8); //reads 8 bytes to value from
0x1000

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes,does not erase (use
ERASE_PROGRAM_EEPROM)

WRITE_PROGRAM_MEMORY - Writes any number of bytes,will erase a block whenever the
first (lowest) byte in a block is written to. If the first address is not the start of a block that block is
not erased.

ERASE_PROGRAM_EEPROM - Will erase a block. The lowest address bits are not used.

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, no erase is needed.

WRITE_PROGRAM_MEMORY - Writes any number of bytes, bytes outside the range of the
write block are not changed. No erase is needed.

ERASE_PROGRAM_EEPROM - Not available.

[PCD]

#rom0x1000=(1,2,3,4) //Inserts this data into the hex
file

erase_ program memory (0x1000) ; //Erases flash page containing
address

//0x1000, erase size depends on

//FLASH ERASE SIZE
write program memory (0x1000,data,12); //Write 12 bytes from data
program memory

//starting at address 0x1000, if
address

88

Functional Overview

//0x1000 is the start of a flash erase
//block, then erase will be done first.
read program memory (0x1000,value,12); //Reads 12 bytes to value from
program
//memory starting at address 0x1000.
WRITE PROGRAM MEMORY //Writes any number of bytes that is a
//multiple of MIN FLASH WRITE. Will
//erase a block whenever the first
(lowest) //byte in a block is written to. If the
//first address is not the start of a block
//that block is not erased.
ERASE PROGRAM MEMORY //Erases a block of size FLASH ERASE SIZE.
//The lowest address bit are not used.
//i.e. any address passed to function will
cause block it is contained in to be erased.

PSP

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:
setup_psp(mode) - Enables/disables the psp port on the chip.

psp_output_full() - Returns 1 if the output buffer is full(waiting to be read by the external
bus).

psp_input_full() - Returns 1 if the input buffer is full(waiting to read by the cpu).

psp_overflow() - Returns 1 if a write occurred before the previously written byte was
read.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_PSP - Interrupt fires when PSP data is in

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PSP - Returns 1 if the device has PSP

Example Code:

while (psp_output full()); //waits till the output buffer is
cleared
psp_data=command; //writes to the port

89

Functional Overview

while (!input buffer full()); //waits till input buffer is
cleared
if (psp overflow())

error=true //if there is an overflow set the
error flag
else
data=psp data; //if there is no overflow then read
the port
QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental
encoders for obtaining mechanical positional data.

Relevant Functions:
setup_gei(options, filter,maxcount) - Configures the QEI module.

gei_status() - Returns the status of the QEI module
gei_set_count(value) - Writes a 16-bit value to the position counter.

gei_get_count() - Reads the current 16-bit value of the position counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_QEI - Interrupt on rollover or underflow of the position counter

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
intlé value;
setup gei (QEI MODE X2 | //Setup the QEI module
QEI TIMER INTERNAL,
QEI_FILTER DIV 2,QEI FORWARD) ;

Value=gei get count(); //Read the count

90

Functional Overview

RS232 1/0
These functions and directives can be used for setting up and using RS232 I/O
functionality.

Relevant Functions:
getc() or getch() / getchar() or fgetc() - Gets a character on the receive pin (from the specified
stream in case of fgetc, stdin by default). Use KBHIT to check if the character is available.

gets() or fgets() - Gets a string on the receive pin (from the specified stream in case of fgets,
STDIN by default). Use getc to receive each character until return is encountered.

putc() or putchar() or / fputc() - Puts a character over the transmit pin (on the specified stream in
the case of fputc, stdout by default).

puts() or fputs() - Puts a string over the transmit pin (on the specified stream in the case of fputc,
stdout by default). Uses putc to send each character.

printf() or fprintf() - Prints the formatted string (on the specified stream in the case of fprintf, stdout
by default). Refer to the printf help for details on format string.

kbhit() - Return true when a character is received in the buffer in case of hardware RS232 or when
the first bit is sent on the RCV pin in case of software RS232. Useful for polling without
waiting in getc.

setup_uart(baud,[stream]) or setup_uart_speed(baud,[stream]) - Used to change the baud rate
of the hardware UART at run-time. Specifying stream is optional. Refer to the help for
more advanced options.

assert(condition) - Checks the condition and if false prints the file name and line to STDERR. Will
not generate code if #DEFINE NODEBUG is used.

perror(message) - Prints the message and the last system error to STDERR.

putc_send() or fputc_send() - When using transmit buffer, used to transmit data from buffer. See
function description for more detail on when needed.

rcv_buffer_bytes() - When using receive buffer, returns the number of bytes in buffer that still
need to be retrieved.

tx_buffer_bytes() - When using transmit buffer, returns the number of bytes in buffer that still need
to be sent.

tx_buffer_full() - When using transmit buffer, returns TRUE if transmit buffer is full.
receive_buffer_full() - When using receive buffer, returns TRUE if receive buffer is full.

tx_buffer_available() - When using transmit buffer, returns number of characters that can be put
into transmit buffer before it overflows.

#useRS232 - Configures the compiler to support RS232 to specifications.

91

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RDA - Interrupt fires when the receive data available.

INT_TBE - Interrup fires when the transmit data empty.

*Some devices have more than one hardware UART, hence more interrupts.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
UART - Returns the number UARTS on this device.

AUART - Returns TRUE if this UART is an advanced UART.

UART_RX - Returns the receive pin for the first UART on this device (see PIN_XX)
UART_TX - Returns the transmit pin for the first UART on this device.

UART2_RX - Returns the receive pin for the second UART on this device.
UART2-TX - Returns the transmit pin for the second UART on this device.

Example Code:
/*configure and enable uart, use first hardware UART on PIC*/

#use rs232(uartl, baud=9600)

/* print a string*/
printf ("enter a character");

/* get a character*/

if (kbhit()) //check if a character has
been received
c=getc () ; //read character from UART
RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where
accurate time must be maintained for extended periods of time with minimum or no
intervention from the CPU. The key features of the module are:

e Time: Hour, Minute and Seconds.

e 24-hour format (Military Time)

e Calendar: Weekday, Date, Month and Year.

92

Functional Overview

e Alarm Configurable.
¢ Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:
setup_rtc (options, calibration); - This will setup the RTCC module for operation and
also allows for calibration setup.

rtc_write(rtc_time_t datetime) - Writes the date and time to the RTCC module.

rtc_read(rtctime_t datetime) - Reads the current value of Time and Date from the
RTCC module.

setup_rtc_alarm(options, mask, repeat); - Configures the alarm of the RTCC module.

rtc_alarm_write(rtctime_t datetime); - Writes the date and time to the alarm in the
RTCC module.

rtc_alarm_read(rtctime_t datetime); - Reads the date and time to the alarm in the
RTCC module.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RTC - Interrupt on Alarm Event on half alarm frequency.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_ rtc (RTC_ENABLE|RTC OUTPUT SECONDS,0x00); //Enable RTCC module
with seconds
//clock and no
calibration.
rtc write(datetime); //Write the value of Date and
Time
//to the RIC module.
rtc_read(datetime); //Reads the value to a
structure time t.

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS).
This operating system is cooperatively multitasking and allows for tasks to be scheduled

93

Functional Overview

to run at specified time intervals. Because the RTOS does not use interrupts, the user
must be careful to make use of the rtos_yield() function in every task so that no one task
is allowed to run forever.

Relevant Functions:
rtos_run() - Begins the operation of the RTOS. All task management tasks are
implemented by this function.

rtos_terminate() - This function terminates the operation of the RTOS and returns
operation to the original program. Works as a return from the rtos_run()function.

rtos_enable(task) - Enables one of the RTOS tasks. Once a task is enabled, the
rtos_run() function will call the task when its time occurs. The parameter to this
function is the name of task to be enabled.

rtos_disable(task) - Disables one of the RTOS tasks. Once a task is disabled, the
rtos_run() function will not call this task until it is enabled using rtos_enable().
The parameter to this function is the name of the task to be disabled.

rtos_msg_poll() - Returns true if there is data in the task's message queue.
rtos_msg_read() - Returns the next byte of data contained in the task's message queue.

rtos_msg_send(task,byte) - Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

rtos_yield() - Called with in one of the RTOS tasks and returns control of the program to
the rtos_run() function. All tasks should call this function when finished.

rtos_signal(sem) - Increments a semaphore which is used to broadcast the availability
of a limited resource.

rtos_wait(sem) - Waits for the resource associated with the semaphore to become
available and then decrements to semaphore to claim the resource.

rtos_await(expre) - Will wait for the given expression to evaluate to true before allowing
the task to continue.

rtos_overrun(task) - Will return true if the given task over ran its allotted time.

rtos_stats(task,stat) - Returns the specified statistic about the specified task. The
statistics include the minimum and maximum times for the task to run and the
total time the task has spent running.

Relevant Preprocessor:

#USE RTOS(options) - This directive is used to specify several different RTOS attributes
including the timer to use, the minor cycle time and whether or not statistics
should be enabled.

#TASK(options) - This directive tells the compiler that the following function is to be an
RTOS task.

94

Functional Overview

#TASK - Specifies the rate at which the task should be called, the maximum time the
task shall be allowed to run, and how large its queue should be.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in.

Relevant getenv() Parameters:
None

Example Code:
#USE RTOS (timer=0,minor cycle=20ms)
minor cycle

int sem;

#TASK (rate=1s,max=20ms, queue=5)
once per second

void task name();

of 20ms and

rtos run();

rtos terminate();
rtos_enable (task name);
declared task.

rtos disable(task name);
declared task

rtos msg send(task name,5);
task names queue.

rtos yield();
rtos_signal (sem);
represented by

// RTOS will use timer zero,

// will be 20ms

// Task will run at a rate of
// with a maximum running time
// a 5 byte queue

// begins the RTOS

// ends the RTOS

// enables the previously

// disables the previously

// places the value 5 in

// yields control to the RTOS
// signals that the resource

// sem is available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola.
Most PIC devices support most common SPI™ modes. CCS provides a support library
for taking advantage of both hardware and software based SPI™ functionality. For

software support, see #USE SPI.

95

Functional Overview

Relevant Functions:

setup_spi(mode), setup_spi2(mode) - Configure the hardware SPI to the specified
mode. The mode configures setup_spi2(mode) thing such as master or slave
mode, clock speed and clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided
to configure the second interface.

spi_data_is_in(), spi_data_is_in2() - Returns TRUE if the SPI receive buffer has a byte
of data.

spi_write(value), spi_write2(value) - Transmits the value over the SPI interface. This
will cause the data to be clocked out on the SDO pin.

spi_read(value), spi_read2(value) - Performs an SPI transaction, where the value is
clocked out on the SDO pin and data clocked in on the SDI pin is returned. If you
just want to clock in data then you can use spi_read() without a parameter.

spi_set_txcnt(value) - Sets the number of SPI transfers to drive SS1 pin to active level.
Only available on PIC18 devices with a dedicated SPI peripheral.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_ssp, #int_ssp2 - Transaction (read or write) has completed on the indicated
peripheral.

pep] #int_spil - Interrupts on the activity from the first SPI module.
[pep] #int_spi2 - Interrupts on the activity from the second SPI module.

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI - Returns TRUE if the device has an SPI peripheral.

Example Code:
//configure the device to be a

master,

//data transmitted on H-to-L clock
transition
setup_spi (SPI_MASTER|SPI H TO L|SPI_CLK DIV 16);
spi write (0x80); //write 0x80 to SPI device
value=spi read(); //read a value from the

SPI device

96

Functional Overview

value=spi_ read(0x80) ; //write 0x80 to SPI device
the same

//time reading a value.
spi set txcnt(3); //drives SS1 pin to active
level

//for 3 SPI transfers

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low
power 32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16-bit timer. It is the only timer that may not be concatenated into a hybrid 32-
bit timer. However, it alone may use a synchronous external clock. This feature may be
used with a low power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16-bit timers. They may use external clock sources only
asynchronously and they may not act as low power real time clock sources. They may
however be concatenated into 32-bit timers. This is done by configuring an even
numbered timer (timer 2, 4, 6 or 8) as the least significant word, and the corresponding
odd numbered timer (timer 3, 5, 7 or 9, respectively) as the most significant word of the
new 32-bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OxFFFF. The period value may be changed
when using setup_timer_X.

Relevant Functions:
setup_timer_X() - Configures the timer peripheral. X may be any valid timer for the
target device. Consult the target datasheet or use getenv to find the valid timers.

get_timerX() - Retrieves the current 16-bit value of the timer.

get_timerXY() - Gets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

set_timerX() - Sets the value of timerX.

set_timerXY() - Sets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

Relevant Preprocessor:
None

97

Functional Overview

Relevant Interrupts:

#int_timerX - Interrupts on timer overflow (period match). X is any valid timer number.
*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be
used (i.e. when using 32-bit Timer 23, #int_timer3).

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERX - Returns 1 if the device has the timer peripheral X. X may be 1-9.

Example Code:
/*Setup timerl as an external realtime clock that increments every 16
clock cycles*/
setup timerl (T1 EXTERNAL RTC|T2 DIV BY 16);

/*Setup timer2 as a timer that increments on every instruction cycle
and has

a period of 0x0100*/

setup timer2 (TMR INTERNAL, 0x0100);

byte value=0x00

value=get timer2(); //retrieve the current value of timer?2

Timer0

These options lets the user configure and use timer0. It is available on all devices and is
always enabled. The clock/counter is 8-bit on PIC16and 8 or 16 bit on PIC18s. It counts
up and also provides interrupt on overflow. The options available differ and are listed in
the device header file.

Relevant Functions:
setup_timer_0O(mode) - Sets the source, prescale etc for timer0

set_timerO(value) or set_rtcc(value) - Initializes the timer0 clock/counter. Value may be
a 8-bit or 16-bit depending on the device.

value=get_timer0 - Returns the value of the timer0 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERO or INT_RTCC - Interrupt fires when timer0 overflows.

98

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERO - Returns 1 if the device has timerQ

Example Code:
For PIC18F452:
setup timer O (RTCC INTERNAL|RTCC DIV Q|RTCC 8 BIT);
//sets the internal clock as source
//and prescale 2. At 20Mhz timerO
//will increment every 0.4us in this
//setup and overflows every 102.4us

set timer0(0); //this sets timer0 register to 0
time-get timerO(); this will read the timer0 register
value

Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on
PIC16s and PIC18s. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:
setup_timer_1(mode) - Disables or sets the source and prescale for timer1.

set_timerl(value) - Initializes the timerl clock/counter.

value=get_timer1 - Returns the value of the timerl clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERL1 - Interrupt fires when timerl overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMER1 - Returns 1 if the device has timerl

Example Code:
For PIC18452:

99

Functional Overview

setup_ timer 1(T1 DISABLED); //disables timerl
setup timer 1(T1 INTERNAL|T1 DIV BY 8); //sets the internal clock as
source

//and prescale as 8. At 20Mhz

timerl

//will increment every 1.6us in
this

//setup and overflows every
104.896ms
set timerl (0); //this sets timerl register to
0
time=get timerl(); //this will read the timerl

register value

Timer2

These options lets the user configure and use timer2. The clock/counter is 8-bit on
PIC16s and PIC18s. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:
setup_timer_2(mode,period,postscale)) - Disables or sets the prescale, period and a
postscale for timer2.

set_timer2(value) - Initializes the timer2 clock/counter.

value=get_timer2 - Returns the value of the timer2 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER?2 - Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERZ2 - Returns 1 if the device has timer2

Example Code:
For PIC18452:
setup timer 2 (T2 DISABLED) ; //disables timer2
setup timer 2 (T2 INTERNAL|T2 DIV BY 4,0xc0,2); //sets the prescale as
4, period
//as 0xc0O and postscales

100

Functional Overview

as 2.

//At 20Mhz timer2 will
increment

// very .8us in this
setup

// and overflows every
154.4us

//and interrupt every

308.2us
set timer2(0); //this sets timer2
register to O
time=get timer2(); //this will read timer2

register value

Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is
available only on 18Fxx31 devices. It counts up and also provides interrupt on overflow.
The options available differ and are listed in the device header file.

Relevant Functions:
setup_timer_5(mode) - Disables or sets the source and prescale for timer5.

set_timer5(value) - Initializes the timer5 clock/counter.
value=get_timer5 - Returns the value of the timer5 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERS - Interrupt fires when timer5 overflows.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERS - Returns 1 if the device has timer5.

101

Functional Overview

Example Code:
For PIC18F4431
setup_timer 5(T5 DISABLED); //disables timer5
setup timer 5(T5 INTERNAL|T5 DIV BY 1); //sets the internal clock as
source and
//prescale as 1. At 20Mhz
timer5 will
//increment every .2us in this

setup

//and overflows every 13.1072ms
set timer5(0); //this sets timer5 register to
0
time=get timer5(); //this will read the timer5

register value

TimerA

These options lets the user configure and use timerA. It is available on devices with
Timer A hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:
setup_timer_A(mode) - Disable or sets the source and prescale for timerA.

set_timerA(value) - Initializes the timerA clock/counter.

value=get_timerA() - Returns the value of the timerA clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERA - Interrupt fires timerA overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERA - Returns 1 if the device has timerA

Example Code:
setup timer A(TA OFF); //disable timerA
setup timer A(TA INTERNAL|TA DIV 8); //sets the internal clock as
source
//and prescale as 8. At 20Mhz
timerA

102

Functional Overview

//will increment every 1.6us in

this

//setup and overflows every 409.6us
set timerA(0): //this sets timerA register to 0
time=get timerA(); //this will read the timerA

register value

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB
hardware. The clock/counter is 8-bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:
setup_timer_B(mode) - Disable or set the source and prescale for timerB.

set_timerB(value) - Initializes the timerB clock/counter.

value=get_timerB() - Returns the value of the timerB clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERB - Interrupt fires when timerB overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERB - Returns 1 if the device has timerB

Example Code:
setup timer B(TB_OFF); //disable timer
setup_timer B(TB_INTERNAL|TB DIV 8); //sets the internal clock as
source
//and prescale as 8. At 20Mhz

timerB

//will increment every l.6us in
this

//setup and overflows every 409.6us
set _timerB(0): //this sets timerB register to 0
time=get timerB(); //this will read the timerB

register value

103

Functional Overview

USB

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to
and talk to a personal computer. CCS provides libraries for interfacing a PIC to PC using
USB by using a device with an internal USB peripheral (like the PIC16C765 or the
PIC18F4550 family) or by using any device with an external USB peripheral (the National
USBN9603 family).

Relevant Functions:

usb_init() - Initializes the USB hardware. Will then wait in an infinite loop for the USB
peripheral to be connected to bus (but that doesn't mean it has been enumerated
by the PC). Will enable and use the USB interrupt.

usb_init_cs() - The same as usb_init(), but does not wait for the device to be connected
to the bus. This is useful if your device is not bus powered and can operate
without a USB connection.

usb_task() - If you use connection sense, and the usb_init_cs() for initialization, then you
must periodically call this function to keep an eye on the connection sense pin.
When the PIC is connected to the BUS, this function will then perpare the USB
peripheral. When the PIC is disconnected from the BUS, it will reset the USB
stack and peripheral. Will enable and use the USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection
sense pin.

usb_detach() - Removes the PIC from the bus. Will be called automatically by
usb_task() if connection is lost, but can be called manually by the user.

usb_attach() - Attaches the PIC to the bus. Will be called automatically by usb_task() if
connection is made, but can be called manually by the user.

usb_attached() - If using connection sense pin (USB_CON_SENSE_PIN), returns
TRUE if that pin is high. Else will always return TRUE.

usb_enumerated() - Returns TRUE if the device has been enumerated by the PC. If the
device has been enumerated by the PC, that means it is in normal operation
mode and you can send/receive packets.

usb_put_packet(endpoint, data, len, tgl) - Places the packet of data into the specified
endpoint buffer. Returns TRUE if success, FALSE if the buffer is still full with the
last packet.

usb_puts(endpoint, data, len,timeout) - Sends the following data to the specified
endpoint. usb_puts() differs from usb_put_packet() in that it will send multi
packet messages if the data will not fit into one packet.

104

Functional Overview

usb_kbhit(endpoint) - Returns TRUE if the specified endpoint has data in it's receive
buffer

usb_get_packet(endpoint, ptr, max) - Reads up to max bytes from the specified
endpoint buffer and saves it to the pointer ptr. Returns the number of bytes saved
to ptr.

usb_gets(endpoint, ptr,max, timeout) - Reads a message from the specified endpoint.
The difference usb_get packet() and usb_gets() is that usb_gets() will wait until a
full message has received, which a message may contain more than one packet.
Returns the number of bytes received.

Relevant CDC Functions:
A CDC USB device will emulate an RS-232 device, and will appear on your PC as a
COM port. The follow functions provide you this virtual RS-232/serial interface.

Note: When using the CDC library, you can use the same functions above, but do not use
the packet related function such as: usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit() - The same as kbhit(), returns TRUE if there is 1 or more character in
the receive buffer.

usb_cdc_getc() - The same as getc(), reads and returns a character from the receive
buffer. If there is no data in the receive buffer it will wait indefinitely until there a
character has been received.

usb_cdc_putc(c) - The same as putc(), sends a character. It actually puts a character
into the transmit buffer, and if the transmit buffer is full will wait indefinitely until
there is space for the character.

usb_cdc_putc_fast(c) - The same as usb_cdc_putc(), but will not wait indefinitely until
there is space for the character in the transmit buffer. In that situation the
character is lost.

usb_cdc_puts(*str) - Sends a character string (null terminated) to the USB CDC port.
Will return FALSE if the buffer is busy, TRUE if buffer is string was put into buffer
for sending. Entire string must fit into endpoint, if string is longer than endpoint
buffer then excess characters will be ignored.

usb_cdc_putready() - Returns TRUE if there is space in the transmit buffer for another
character.

Relevant Preprocessor:
None

105

Functional Overview

Relevant Interrupts:
#int_usb - A USB event has happened, and requires application intervention. The USB
library that CCS provides handles this interrupt automatically.

Relevant Include Files:
pic_usb.h - Hardware layer driver for the PIC16C765 family PICmicro controllers with an

internal USB peripheral.

pic18 usb.h - Hardware layer driver for the PIC18F4550 family PICmicro controllers with
an internal USB peripheral.

usbn960x.h - Hardware layer driver for the National USBN9603/USBN9604 external
USB peripheral. You can use this external peripheral to add USB to any
microcontroller.

usb.h - Common definitions and prototypes used by the USB driver.

ush.c - The USB stack, which handles the USB interrupt and USB Setup Requests on
Endpoint 0.

usb_cdc.h - A driver that takes the previous include files to make a CDC USB device,
which emulates an RS232 legacy device and shows up as a COM port in the MS
Windows device manager.

Relevant getenv() Parameters:
USB - Returns TRUE if the device has an integrated internal USB peripheral.

Example Code:
Due to the complexity of USB example code will not fit here. But you can find the
following examples installed with your CCS C Compiler:
ex_usb_hid.c - A simple HID device
ex_usb_mouse.c - A HID Mouse, when connected to the PC, the mouse cursor will
go in circles.
ex_usb_kbmouse.c - An example of how to create a USB device with multiple
interfaces by creating a keyboard and mouse in one device.
ex_usb_kbmouse2.c - An example of how to use multiple HID report IDs to transmit
more than one type of HID packet, as demonstrated by a keyboard and mouse
on one device.
ex_ushb_scope.c - A vendor-specific class using bulk transfers is demonstrated.
ex_usb_serial.c - The CDC virtual RS232 library is demonstrated with this RS232 <
- > USB example.
ex_usb_serial2.c - Another CDC virtual RS232 library example, this time a port of
the ex_intee.c example to use USB instead of RS232.

106

Functional Overview

Voltage Reference

These functions configure the votlage reference module. These are available only in the
supported chips.

Relevant Functions:
setup_vref(mode | value) - Enables and sets up the internal voltage reference value. Constants
are defined in the device's .h file.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
VREF - Returns 1 if the device has VREF

Example Code:
#INT COMP //comparator interrupt handler
void isr () {
safe conditions = FALSE;
printf ("WARNING!!!! Voltage level is above 3.6V. \r\n");
}

setup comparator (Al VR OUT ON A2)//sets 2 comparators (Al and VR and A2
as output)
{
setup vref (VREF HIGH | 15);//sets 3.6(vdd * value/32 + vdd/4) if
vdd is 5.0V
enable interrupts (INT COMP); // enable the comparator interrupt
enable interrupts (GLOBAL); //enable global interrupts

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:
setup_wdt() - Enables/disables the wdt or sets the prescalar.

restart_wdt() - Restarts the wdt, if wdt is enables this must be periodically called to
prevent a timeout reset.

107

Functional Overview

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH
device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH
using fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232
statements like this #USE DELAY(clock=20000000, restart_wdt) will cause the wdt to
restart if it times out during the delay or I2C_READ or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT - Enables/Disables WDT in PCB/PCM devices.

#FUSES WDT16 - Sets up the timeout/timein in PCH devices.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
For PIC16F877
#fuses wdt setup wdt (WDT 2304MS);
while (true) {
restart wdt();
perform activity();

{

For PIC18F452
#fuse WDT1
setup_ wdt (WDT_ON) ;
while (true) {
restart wdt();
perform activity () :

}
Some of the PCB chips are share the WDT prescalar bits with timer0O so the WDT

prescalar constants can be used with setup_counters or setup_timer0 or setup_wdt
functions.

108

Functional Overview

Stream /O

Syntax:
#include <ios.h> is required to use any of the ios identifiers.

Ouptut:
output:
stream << variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default
stream use cout.

stream may also be the name of a char array. In this case the data is written to the array
with a 0 terminator.

stream may also be the name of a function that accepts a single char parameter. In this
case the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
output as strings and all other types are output as an address of the variable.

Manipulators:
hex -Hex format numbers

dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and 0 (default)

fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings

endl -Output CR/LF

ends- Outputs a null (\000")

Examples:
cout << "Value is " << hex << data << endl;

109

Functional Overview

cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;

lcdputc << "\f' << setw(3) << count << " " << min << " " << max;
stringl << setprecision(l) << sum / count;
string2 << x << ',' << y;

Input:

stream >> variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default
stream use cin.

stream may also be the name of a char array. In this case the data is read from the
array up to the 0 terminator.

stream may also be the name of a function that returns a single char and has no
parameters. In this case the function is called for each character to be input.
Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are input
as strings. Floats may use the E format. Reading of each item terminates with
any character not valid for the type. Usually items are separated by spaces. The
termination character is discarded. At the end of any stream input statement
characters are read until a return (\r) is read. No termination character is read
for a single char input.

Manipulators:
hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)

iosdefault -All manipulators to default settings

Examples:
cout << "Enter number: ";
cin >> value;
cout << "Enter title: ";
cin >> strspace >> title;
cin >> dataf[i].recordid >> data[i].xpos >> datal[i].ypos >>
datal[i] .sample ;

110

Functional Overview

stringl >> data;

lcdputc << "\fEnter count";

lcdputc << keypadgetc >> count; // read from keypad, echo to lcd
// This syntax only works with
// user defined functions.

111

PreProcessor

PREPROCESSOR

address

Syntax:
A predefined symbol _ _address_ _ may be used to indicate a type that must hold a program
memory address.

Examples:
__address__ testa = 0x1000 //will allocate 16 bits for test a
and
//initialize to 0x1000

attribute x

Syntax:
__attribute_ x

Elements:
X is the attribute you want to apply. Valid values for x are as follows: ((packed))

By default each element in a struct or union are padded to be evenly spaced by the size
of 'int'. This is to prevent an address fault when accessing an element of struct. See the
following example:
struct
{
int8 a;
intl6 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24 microcontrollers), 'test’
would take 4 bytes even though it is comprised of3 bytes. By applying the ‘packed'
attribute to this struct then it would take 3 bytes as originally intended:
struct __ attribute__ ((packed))
{
int8 a;
intl6 b;
} test;

Care should be taken by the user when accessing individual elements of a packed struct
— creating a pointer to 'b' in 'test' and attempting to dereference that pointer would cause
an address fault. Any attempts to read/write 'b' should be done in context of 'test' so the
compiler knows it is packed:

test.b = 5;

112

PreProcessor

((aligned(y)) - By default the compiler will allocate a variable in the first free memory

location. The aligned attribute will force the compiler to allocate a location for the

specified variable at a location that is modulus of the y parameter. For example:
int8 array[256] __attribute__ ((aligned(0x1000)));

This will tell the compiler to try to place 'array' at either 0x0, 0x1000, 0x2000, 0x3000,
0x4000, etc.

Description:
To alter some specifics as to how the compiler operates.

Examples:
struct _ attribute ((packed))
{
int8 a;
int8 b;
} test;
int8 array[256] _ attribute ((aligned(0x1000)));

#asm, #endasm, #asm asis

Syntax:
#ASM or #ASM ASIS code #ENDASM

Elements:
Code is a list of assembly language instructions.

Description:
12 Bit and 14 Bit

ADDWEF f,d ANDWEF f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWE f
NOP RLF f,d
RRF f,d SUBWEF f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSSf,b

113

ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable

may be a constant (0 or 1) or W or F

f.b may be a file (as above) and a constant (0-7) or it may be
just a bit variable reference.

k may be a constant expression

*Note that all expressions and comments are in C like syntax.

PreProcessor

PIC 18

ADDWF f,d ADDWFC f.d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSZ f,d DCFSNz f,d INCF f,d
INFSNZ f,d IORWF f.d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f.d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB f,d SUBWF f.d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f,b BSF f,b BTFSC f,b
BTFSS f,b BTG f.d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE S RETLW k RETURN S

114

PreProcessor

SLEEP - ADDLW ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *. TBLRD +*
TBLWT * TBLWT e TBLWT =
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before
it. And if it is an expression it must be a valid C expression that evaluates to a constant
(no & here). In C an un-subscripted array name is a pointer and a constant (no need for

&).

[PCD]

PIC24 and dsPIC

ADD Wa,Wb,Wd Wd = Wa+Whb

ADD f,W WO = f+wd

ADD lita0,wWd wd = lit10+Wd

ADD Wa,lit5,Wd Wd = lit5+Wa

ADD f,F f = f+Wd

ADD acc Acc = AccA+AccB

ADD wd {lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd Wd = lit10+Wd (byte)
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd Wd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)

ADD.B Wa,Wb,wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd Wd = lit5+Wa (byte)
ADD.B f,W WO = f+Wd (byte)
ADDC f,W Wd = f+Wa+C

ADDC lit10,wd wd = lit10+Wd+C
ADDC Wa,lit5,Wd Wd = lit5+Wa+C

ADDC f,F Wd = f+Wa+C

ADDC Wa,Whb,Wd Wd = Wa+Wb+C
ADDC.B lit10,wd Wd = litl0+Wd+C (byte)
ADDC.B Wa,Whb,wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wd = lit5+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Whb,wWd Wd =Wa.&Whb

115

PreProcessor

AND litl0,wd Wwd =1it10.&.Wd

AND f,W WO =f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,Wd Wd = lit5.& Wa

AND.B f,W WO = f.& Wa (byte)

AND.B Wa,Wb,wWd Wd = Wa.& Wb (byte)

AND.B liti0,wWd wWd = 1it10.&.Wd (byte)

AND.B f,F f = f.& Wa (byte)

AND.B Wa,lit5,Wd Wd = lit5.& Wa (byte)

ASR W WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,Wd Wd =Wa >>1 arithmetic

ASR Wa,lit4,Wd Wd =Wa >> lit4 arithmetic

ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic
ASR.B f,F f=f>>1 arithmetic (byte)
ASR.B fW WO =f>>1 arithmetic (byte)
ASR.B Wa,wd Wd =Wa >>1 arithmetic (byte)
BCLR f,.B f.bit=0

BCLR wd,B Wa.bit=0

BCLR.B wd,B Wa.bit = 0 (byte)

BRA a Branch unconditionally

BRA Wd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal
BRAGEU | a Branch if unsigned greater than or equal
BRA GT a Branch if greater than

BRAGTU |a Branch if unsigned greater than
BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal
BRALT a Branch if less than

BRALTU a Branch if unsigned less than
BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRANOV | a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow
BRA OB a Branch if Accumulator B overflow
BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate

116

PreProcessor

BRA SB a Branch if Accumulator B Saturate
BRA Z a Branch if Zero
BREAK ICD Break

BSET Wd,B Wa.bit =1

BSET f,B f.oit=1

BSET.B Wd,B Wa.hit = 1 (byte)
BSW.C Wa,Wd WaWb=C

BSW.Z Wa,Wd WaWb =2

BTG Wd,B Wa.bit = ~Wa.bit
BTG f.B f.bit = ~f.bit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f.B Skip if f.bit=0

BTSC Wd,B Skip if Wa.bit4 = 0
BTSS f.B Skip if f.bit=1

BTSS Wd,B Skip if Wa.bit = 1
BTST f,.B Z = f.bit

BTST.C Wa,wd C =Wa.Wh

BTST.C Wd,B C = Wa.hit

BTST.Z Wd,B Z = Wa.bit

BTST.Z Wa,Wd Z=Wa.Wb

BTSTS f,B Z =f.bit; f.hit =1
BTSTS.C wWd,B C =Wa.hit; Wa.bit =1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit = 1
CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0
CLR f.wW W0=0

CLR wd Wd=0

CLR.B fW WO = 0 (byte)

CLR.B wd Wd = 0 (byte)

CLR.B f,F f =0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM fW WO = ~f

COM Wa,Wd Wd = ~Wa

COM.B fW WO = ~f (byte)
COM.B Wa,wd Wd = ~Wa (byte)
COM.B f,F f =~f (byte)

CP W f Status set for f - WO
CP Wa,Wd Status set for Wb 4€“ Wa

117

PreProcessor

CP wWd,lit5 Status set for Wa &€" lits

CP.B W, f Status set for f - WO (byte)

CP.B Wa,wd Status set for Wb &€ Wa (byte)
CP.B Wd,lit5 Status set for Wa &€ lit5 (byte)
CPO wd Status set for Wa &4€“ 0

CPO W, f Status set for f 8€“ 0

CPO.B wd Status set for Wa &€" 0 (byte)
CPO0.B W, f Status set for f 4€° 0 (byte)

CPB Wd,lit5 Status set for Wa a€" Iit5 8€“ C
CPB Wa,Wd Status set for Wb &€“ Wa &€“ C
CPB W, f Status set for f 8€" W0 - C
CPB.B Wa,Wd Status set for Wb 8€“ Wa &€* C (byte)
CPB.B Wd,lit5 Status set for Wa a€" it 4€° C (byte)
CPB.B W, f Status set for f 8€“ WO - C (byte)
CPSEQ Wa,Wd Skip if Wa = Wb

CPSEQ.B | Wa,Wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B Wa,Wd Skip if Wa > Wb (byte)

CPSLT Wa,Wwd Skip if Wa < Wb

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa != Wb

CPSNE.B Wa,wd Skip if Wa = Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wd Wd = Wa a€“ 1

DEC f,W WO =f a€" 1

DEC f,F f=fa€ 1

DEC.B f,F f=fa€" 1 (byte)

DEC.B f,W WO = f 4€" 1 (byte)

DEC.B Wa,Wd Wd =Wa a€" 1 (byte)

DEC2 Wa,Wd Wd = Wa a€“ 2

DEC2 f,W W0 =fa&a€" 2

DEC2 f,F f=fa€"2

DEC2.B Wa,Wd Wd =Wa &€* 2 (byte)

DEC2.B f,W WO = f 4€" 2 (byte)

DEC2.B f,F f=f&€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles
DIV.S Wa,Wd Signed 16/16-bit integer divide
DIV.SD Wa,wd Signed 16/16-bit integer divide (dword)
DIV.U Wa,wd UnSigned 16/16-bit integer divide
DIV.UD Wa,wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,wd Signed 16/16-bit fractional divide

118

PreProcessor

DO lit14,a Do block lit14 times
DO Wd,a Do block Wa times
ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance
EXCH Wa,wd Swap Wa and Wb
FBCL Wa,wd Find bit change from left (Msb) side
FEX ICD Execute

FF1L Wa,wd Find first one from left (Msb) side
FF1R Wa,wd Find first one from right (Lsb) side
GOTO a GoTo

GOTO wd GoTo [Wa]

INC fW WOo=f+1

INC Wa,wd Wd=Wa + 1

INC f,F f=f+1

INC.B Wa,Wd Wd =Wa + 1 (byte)
INC.B f,F f=1+1 (byte)

INC.B f,W WO =f + 1 (byte)
INC2 f,W WOo=f+2

INC2 Wa,Wd Wd =Wa + 2

INC2 f,F f=f+2

INC2.B f,W WO =f + 2 (byte)
INC2.B f,F f=f+ 2 (byte)
INC2.B Wa,wd Wd =Wa + 2 (byte)
IOR lit10,Wd wd = 1it10 | wd

IOR f,F f=f|Wa

IOR f,W W0 =f|Wa

IOR Wa,lit5,Wd Wd = Wa.|.lit5

IOR Wa,Wb,wd wd = Wa.|.Wb

IOR.B Wa,Wb,wd Wd = Wa.|.Wb (byte)
IOR.B fW WO =f | Wa (byte)
IOR.B litao,wd Wd = 1it10 | Wd (byte)
IOR.B Wa,lit5,Wd Wd =Wa.l.lit5 (byte)
IOR.B f,F f=f|Wa (byte)

LAC wd,{lit4},acc Acc = Wa shifted slit4
LNK lit14 Allocate Stack Frame
LSR f,W Wo=f>>1

LSR Wa,lit4, Wd Wd = Wa >> lit4

LSR Wa,Wd Wwd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,Wd Wd =Wb >>Wa
LSR.B f,W WO =f>> 1 (byte)

119

PreProcessor

LSR.B f,F f=f>>1 (byte)

LSR.B Wa,Wd Wd =Wa >> 1 (byte)

MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc,pi | Acc = Acc + Wa * Wb; {[W13] = Acc}; {prefetch}
MOV W f f=Wa

MOV f,W WO = f

MOV f,F f=f

MOV wd,? F=Wa

MOV Wa+lit, Wd Wd = [Wa +SIit10]

MOV ?,wd Wd =f

MOV liti6,Wd Wd = 1it16

MOV Wa,Wd Wd =Wa

MOV Wa,Wd+lit [wd + Slitl0] = Wa

MOV.B lit8,Wd Wd = 1it8 (byte)

MOV.B W, f f = Wa (byte)

MOV.B f,W WO = f (byte)

MOV.B f,F f = f (byte)

MOV.B Wa+lit, wd Wd = [Wa +S]it10] (byte)

MOV.B Wa,Wd-+lit [wd + SIit10] = Wa (byte)

MOV.B Wa,Wd Wd = Wa (byte)

MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1

MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1

MOVSAC acc,da,dc,pi Move ?to ? and ? To ?

MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Whb)

MSC Wd*Wc,acc,da,dc,pi | Acc = Acc a€* Wa*Wb

MUL W, f W3:W2 =f*Wa

MUL.B W, f W3:W2 =f*Wa (byte)

MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wh)
MUL.SU Wa,wd {Wd+1,Wd} = sign(Wa) * unsign(Wh)
MUL.SU Wa,lit5,Wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)
MUL.US Wa,wd {wd+1,Wd} = unsign(Wa) * sign(Wb)
MUL.UU Wa,wd {Wd+1,Wd} = unsign(Wa) * unsign(Wb)
MUL.UU Wa,lit5,Wd {Wd+1,Wd} = unsign(Wa) * unsign(lit5)
NEG f,F f=-f

PUSH wd Push Wa to TOS

PUSH.D wd PUSH double Wa:Wa + 1 to TOS
PUSH.S PUSH shadow registers

PWRSAV litl Enter Power-saving mode litl
RCALL a Call (relative)

120

PreProcessor

RCALL wd Call Wa

REPEAT lit14 Repeat next instruction (lit14 + 1) times
REPEAT wd Repeat next instruction (Wa + 1) times
RESET Reset

RETFIE Return from interrupt enable

RETLW lit10,Wd Return; Wa = [it10

RETLW.B lit10,Wd Return; Wa = [it10 (byte)

RETURN Return

RLC Wa,wd W(d = rotate left through Carry Wa
RLC f,F f = rotate left through Carry f

RLC f,W WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)
RLC.B f,W WO = rotate left through Carry f (byte)
RLC.B Wa,wd W(d = rotate left through Carry Wa (byte)
RLNC Wa,wWd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC fW WO = rotate left (no Carry) f

RLNC.B f,W WO = rotate left (no Carry) f (byte)
RLNC.B Wa,wd Wd = rotate left (no Carry) Wa (byte)
RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,wd Wd = rotate right through Carry Wa
RRC f,W WO = rotate right through Carry f
RRC.B f,W WO = rotate right through Carry f (byte)
RRC.B f,F f = rotate right through Carry f (byte)
RRC.B Wa,wd Wd = rotate right through Carry Wa (byte)
RRNC f,F f = rotate right (no Carry) f

RRNC f,W WO = rotate right (no Carry) f

RRNC Wa,wd Wd = rotate right (no Carry) Wa
RRNC.B f,F f = rotate right (no Carry) f (byte)
RRNC.B Wa,Wd Wd = rotate right (no Carry) Wa (byte)
RRNC.B f,W WO = rotate right (no Carry) f (byte)
SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,wd Wd = sign-extended Wa

SETM wd Wd = OXFFFF

SETM f,F WO = OxFFFF

SETM.B wd Wd = OXFFFF (byte)

SETM.B f,W WO = OxFFFF (byte)

SETM.B f,F WO = OXFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)

121

PreProcessor

SFTAC acc,lits Arithmetic shift Acc by Slit6
SL f,W WOo=f<<1

SL Wa,Wb,wd Wd = Wa <<Whb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd=Wa<<1

SL f,F f=f<<1

SL.B f,W WO =f << 1 (byte)

SL.B Wa,wd Wd = Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=fa€" Wo

SUB f,W WO = f a€“ W0

SUB Wa,Wb,Wd Wd = Wa &€“ Wb

SUB Wa,lit5,Wd Wd = Wa &€° lits

SUB acc Acc = AccA a€“ AccB

SUB liti0,wWd Wd = Wd a€“ lit10

SUB.B Wa,lit5,Wd Wd = Wa a€“ lits (byte)
SUB.B liti0,wd Wd = Wd a€“ lit10 (byte)
SUB.B f,W WO = f &4€" WO (byte)
SUB.B Wa,Wb,Wd Wd = Wa a€“ Wb (byte)
SUB.B f,F f=f a€" WO (byte)

SUBB f,W WO =f a€“ W0 &€ C
SUBB Wa,Wb,Wd Wd = Wa a€“ Wb a€“ C
SUBB f,F f=fa€" W0 a€“C

SUBB Wa,lit5,Wd Wd=Wa a€“lits - C

SUBB lit10,Wd Wd =Wd a€“ lit10 8€° C
SUBB.B litio,wd Wd =Wd a€" lit10 &€ C (byte)
SUBB.B Wa,Wb,Wd Wd = Wa a€“ Wb a€“ C (byte)
SUBB.B f,F f=f&€E" W0 a€" C (byte)
SUBB.B Wa,lit5,Wd Wd = Wa &€°1its - C (byte)
SUBB.B fW WO = f &4€" WO &€" C (byte)
SUBBR Wa,lit5,Wd Wd = Iits € Wa - C
SUBBR fW W0 =W0 &€"fa€*“C
SUBBR f,F f=WO0 a€“fa€“ C

SUBBR Wa,Wb,wd Wd =Wa a€“Wb - C
SUBBR.B | f,F f=WO0 &€ f 4€" C (byte)
SUBBR.B | f,W WO =WO0 &€“ f 4€* C (byte)
SUBBR.B | Wa,Wb,Wd Wd = Wa a€“ Wb - C (byte)
SUBBR.B | Wa,lit5,Wd Wd = [its 4€" Wa - C (byte)
SUBR Wa,lit5,Wd Wd = lit5 &€“ Wb

SUBR f,F f=WO0 a€" f

122

PreProcessor

SUBR Wa,Wb,Wd Wd =Wa a€“ Wb

SUBR f,W W0 = W0 a€“f

SUBR.B Wa,Wb,wWd Wd =Wa a€" Wb (byte)

SUBR.B f,F f=WO0 a€“f (byte)

SUBR.B Wa,lit5,Wd Wd = lits 4€“ Wb (byte)

SUBR.B f,W W0 =WO0 a€“ f (byte)

SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH Wa,wd Wd = ROM[Wa] for odd ROM
TBLRDH.B | Wa,wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B | Wa,wd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,wd ROM[Wa] = Wd for odd ROM
TBLWTH.B | Wa,wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,wWd ROM[Wa] = Wd for even ROM
TBLWTL.B | Wa,wd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

XOR Wa,Wb,wWd Wd =Wa Wb

XOR f,F f=fAWO0

XOR f,W WO =f~WO0

XOR Wa,lit5,Wd Wd =Wa " lits

XOR lit10,Wd Wd =Wd 7 1it10

XOR.B lit10,Wd Wd =Wd " 1it10 (byte)

XOR.B f,W WO =f WO (byte)

XOR.B Wa,lit5,Wd Wd =Wa " it (byte)

XOR.B Wa,Wb,Wd Wd =Wa " Wb (byte)

XOR.B f,F f=f~WO (byte)

ZE Wa,Wd Wd =Wa & FF

Example Files:

FFT.c

Examples:

int find parity(int data) {

int count;

#asm

MOV #0x08, WO

MOV WO,
CLR WO

count

123

PreProcessor

loop:

XOR.B data, WO
RRC data, WO

DEC count, F

BRA NZ, loop

MOV #0x01, WO

ADD count, F

MOV count, WO
MOV WO. RETURN
#endasm

#bank dma

Syntax:
#bank_dma

Elements:
None

Description:
Informs the compiler to assign the data for the next variable, array or structure into DMA
bank.

Examples:
#bank dma
struct {
int r w;
int c_w;
long unused :2;
long data: 4;
}a_port; //the data for a port will be forced into memory
bank DMA

#bankx

Syntax:
#bankx

None
Description:

Informs the compiler to assign the data for the next variable, array or structure into
BankX.

124

PreProcessor

Examples:
#bankx
struct {
int r w;
int c_d;
long unused : 2;
long data : 4;
} a port;
// The data for a port will be forced into memory bank

#banky

Syntax:
#banky

None

Description:

Informs the compiler to assign the data for the next variable, array or structure into
Banky.

Examples:
#banky
struct {
int r w;
int c_d;
long unused : 2;
long data : 4;
} a port;
// The data for a port will be forced into memory bank
Yy

#bit

Syntax:
#BIT id =x.y

Elements:

id is a valid C identifier,

X is a constant or a C variable,

y is a constant 0-7 (for 8-bit PICs)
[pcp] Y is a constant 0-15

125

PreProcessor

Description:

A new C variable (one bit) is created and is placed in memory at byte x and bity. This is useful to
gain access in C directly to a bit in the processors special function register map. It may also be
used to easily access a bit of a standard C variable.

Example Files:
ex_dglint.c

Examples:
#bit TOIF = 0x b.2

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if (result odd)

[PCD]
#bit TI1IF = 0x84.3

T1IF = 0; // Clear Timer O interrupt flag

int result;
#bit result odd = result.O

if (result_odd)

See Also:
#BYTE, #RESERVE, #LOCATE, #WORD

buildcount

Description:
Only defined if Options>Project Options>Global Defines has global defines enabled.

This id resolves to a number representing the number of successful builds of the project.

#build

Syntax:

#BUILD(segment = address)

#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)

#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

irep] #BUILD(segment = size) : For STACK use only

126

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

tpeo] #BUILD(ALT_INTERRUPT)
ieeo) #BUILD(AUX_MEMORY)

Elements:
segment - is one of the following memory segments which may be assigned a location:
MEMORY, RESET, or INTERRUPT.

pcp] segment - is one of the following memory segments which may be assigned a
location: RESET, INTERRUPT, or STACK.

address - is a ROM location memory address. Start and end are used to specify a
range in memory to be used.

start - is the first ROM location and end is the last ROM location to be used.

prep] address - is a ROM location memory address. Start and end are used to specify a
range in memory to be used. Start is the first ROM location and end is the last ROM
location to be used.

ireo] RESET - will move the compiler's reset vector to the specified location. INTERRUPT
will move the compiler's interrupt service routine to the specified location. This just
changes the location the compiler puts it's reset and ISR, it doesn't change the actual
vector of the PIC. If you specify a range that is larger than actually needed, the extra
space will not be used and prevented from use by the compiler.

ireo] STACK - configures the range (start and end locations) used for the stack, if not
specified the compiler uses the last 256 bytes. The STACK can be specified by only
using the size parameters. In this case, the compiler uses the last RAM locations on the
chip and builds the stack below it.

ireo] ALT_INTERRUPT - will move the compiler's interrupt service routine to the alternate
location, and configure the PIC to use the alternate location.

nosleep - is used to prevent the compiler from inserting a sleep at the end of main()
Bootload - produces a bootloader-friendly hex file (in order, full block size).
NOSLEEP_LOCK - is used instead of A sleep at the end of a main A infinite loop.

ireco) AUX_MEMORY - Only available on devices with an auxiliary memory segment.
Causes compiler to build code for the auxiliary memory segment, including the auxiliary
reset and interrupt vectors. Also enables the keyword INT_AUX which is used to create
the auxiliary interrupt service routine.

Description:

PIC18XXX devices with external ROM or PIC18XXX devices with no internal ROM can
direct the compiler to utilize the ROM. When linking multiple compilation units, this
directive must appear exactly the same in each compilation unit.

127

PreProcessor

rep] These directives are commonly used in bootloaders, where the reset and interrupt
needs to be moved to make space for the bootloading application.

Example Files:
ex_glint.c

Examples:

#build (memory=0x20000:0x2FFFF) //Assigns memory
space
#build (reset=0x200, interrupt=0x208) //Assigns start
location

//of reset and
interrupt

//vectors
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

//Assign limited

space
//for reset and
interrupt
//vectors.
#build (memory=0x20000:0x2FFFF) //Assigns memory space

[PCD]
/* assign the location where the compiler will place the reset
and interrupt vectors */

#build (reset=0x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#build (stack=0x1E00:0x1FFF)

#build (stack= 0x300) // When Start and End
locations are

//not specified, the
compiler uses

//the last RAM locations
available

//on the chip.

See Also:
#LOCATE, #RESERVE, #ROM, #ORG

128

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#byte

Syntax:
#byte id = x

Elements:
id is a valid C identifier,
X is a C variable or a constant

Description:

If the id is already known as a C variable then this will locate the variable at address

X. In this case the variable type does not change from the original definition. If the id is
not known a new C variable is created and placed at address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share the
same memory location.

Example Files:

ex_glint.c

Examples:
#byte status = 3
#byte b port = 6

struct {
short int r w;
short int c_d;
int unused : 2;
int data : 4; } a port;
#byte a_port =5

a port.c d = 1;

[PCD]
#byte status register = 0x42
#byte b port = 0x02C8

struct {
short int r w;
short int c d;
int data : 6 ; } E _port;
#byte a port = 0x2DA

a port.c d = 1;

129

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

See Also:
#bit, #locate, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#case
Syntax:
#case

Elements:
None

Description:

Will cause the compiler to be case sensitive. By default the compiler is case insensitive.
When linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been tested with
case sensitivity turned on.

Example Files:
ex_cust.c

Examples:
ffcase

int STATUS;

void func () {
int status;

STATUS = status; // Copy local status to
//global
}

date

Syntax:
__date

Elements:
None

130

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:
This pre-processor identifier is replaced at compile time with the date of the compile in the
form: "31-jan-03".

Example Files:
ex_glint.c

Examples:
printf ("Software was compiled on ");
printf(DATE)

#define

Syntax:
#define id text
or
#define id(x,y...) text

Elements:
id is a preprocessor identifier, text is any text, X,y is a list of local preprocessor identifiers,
and in this form there may be one or more identifiers separated by commas.

Description:
Used to provide a simple string replacement of the ID with the given text from this point of
the program and on.

In the second form (a C macro) the local identifiers are matched up with similar identifiers
in the text and they are replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will be the
parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is concatenated with
parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
X##y is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ... and

the local identifier used is __va_args__. In this case, all remaining arguments are
combined with the commas.

131

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Example Files:
ex_stwt.c, ex_macro.c

Examples:
#define BITS 8
a=a+BITS; //same as a=a+8;
#define hi (x) (x<<4)
a=hi (a); //same as a=(a<<4) ;
#define isequal (a,b) (primary ##a[bl==backup ##al[b])
// usage iseaqual (names, 5) is the
same as
//
(primary names [5]==backup names([5])
#define str(s) #s
#define part (device) #include str(device##.h)
// usage part (16F887) is the same as
// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)
See Also:

#UNDEF, #IFDEF, #IENDEF

#definedinc

Syntax:
value = definedinc(variable);

Parameters:
variable - is the name of the variable, function, or type to be checked.

Returns:

A C status for the type of id entered as follows:
0 — not known

1 — typedef or enum

2 — struct or union type

3 — typemod qualifier

4 — defined function

5 — function prototype

6 — compiler built-in function
7 — local variable

8 — global variable

132

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Function:

PreProcessor

This function checks the type of the variable or function being passed in and returns a specific C

status based on the type.

Availability:
All Device

Examples:
int x, y = 0;

y = definedinc(x);

#device

Syntax:
#DEVICE chip options

// y will return 7 - x is a local variable

#DEVICE Compilation mode selection

Elements:
Chip Options:

chip is the name of a specific processor (like: PIC16C74 or dsPIC33FJ64GP306), To
get a current list of supported devices: START | RUN | CCSC +Q
Options are gualifiers to the standard operation of the device. Valid options are:

*=5 Use 5 bit pointers (for all parts)

*=8 Use 8 bit pointers (14 and 16 bit parts)

*=16 Use 16 bit pointers (for 14 bit parts)

ADC=x Where x is the number of bits read_adc() should return

Pcp] ADC=SIGNED

Result returned from read_adc() is signed.(Default is
unsigned)

pco] ADC=UNSIGNED

Return result from read_adc() is unsigned.(default is
UNSIGNED)

ICD=TRUE Generates code compatible with Microchips ICD debugging
hardware.
ICD=n For chips with multiple ICSP ports specify the port number

being used. The defaultis 1.

WRITE_EEPROM=ASYNC

Prevents WRITE_EEPROM from hanging while writing is
taking place. When used, do not write to EEPROM from
both ISR and outside ISR.

WRITE_EEPROM = NOINT

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

HIGH_INTS=TRUE

Use this option for high/low priority interrupts on the PIC®
18.

%f=.

No 0 before a decimal pint on %f numbers less than 1.

OVERLOAD=KEYWORD

Overloading of functions is now supported. Requires the

133

PreProcessor

use of the keyword for overloading.

OVERLOAD=AUTO

Default mode for overloading.

PASS_STRINGS=IN_RAM

A new way to pass constant strings to a function by first
copying the string to RAM and then passing a pointer to
RAM to the function.

CONST=READ_ONLY

Uses the ANSI keyword CONST definition, making CONST
variables read only, rather than located in program memory.

CONST=ROM

Uses the CCS compiler traditional keyword CONST
definition, making CONST variables located in program
memory.

NESTED_INTERRUPTS=TRUE

Enables interrupt nesting for PIC24, dsPIC30, and dsPIC33
devices. Allows higher priority interrupts to interrupt lower
priority interrupts.

NORETFIE

ISR functions (preceded by a #int_xxx) will use a RETURN
opcode instead of the RETFIE opcode. This is not a
commonly used option; used rarely in cases where the user
is writing their own ISR handler.

NO_DIGITAL_INIT

Normally the compiler sets all I/O pins to digital and turns off
the comparator. This option prevents that action.

VECTORL_INTS

For devices with both single and multiple vector interrupts.
This selects multiple vectors.

pco] DUAL_PARTITION

For devices with Dual Partition Flash Modes, this enables
Dual Partition Flash mode by setting the FBOOT
configuration register to the appropriate value. It cuts the
available program memory in half, and moves the
configuration register addresses to the Dual Partition
locations.

[PCD]
DUAL_PARTITION_PROTECTED

For devices with Dual Partition Flash Modes this enabled
Protected Dual Partition Flash mode, Partition 1 is write-
protected when inactive, by setting the FBOOT configuration
register to the appropriate value. It cuts the available
program memory in half and moves the configuration
register addresses to the Dual Partition locations.

pco] PARTITION_SEQUENCE=X

A value from 0 to 4095 to set the FBTSEQ configuration
register. Only used when either DUAL_PARTITION or
DUAL_PARTITION_PROTECTED is used. The value is
used to determine which partition is active on power-up.
The Partition with the lowest value will be the active
partition. If the value is the same for both partitions, then
Partition 1 will be the active partition on power-up.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define
the device. Be warned that a #DEVICE with a chip identifier, will clear all previous

#DEVICE and #FUSE settings.

Compilation mode selection:

134

PreProcessor

The #DEVICE directive supports compilation mode selection. The valid keywords are
CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI
mode, the compiler uses the default fuse settings NOLVP, PUT for chips with these
fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode. The pointer size in this mode for PCM and
PCH is set to *=16 if the part has RAM over OFF.

ANSI Default data type is SIGNED all other modes default is UNSIGNED. Compilation is
case sensitive, all other modes are case insensitive. Pointer size is set to *=16 if the part
has RAM over OFF.

CCs2 varlé = NegConst8 is compiled as: varl6 = NegConst8 & Oxff (no sign extension)
CCSs3 Pointer size is set to *=8 for PCM and PCH and *=5 for PCB . The overload keyword is
required.

CCSs2 The default #DEVICE ADC is set to the resolution of the part, all other modes default to
only 8.
onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Description:
To alter some specifics as to how the compiler operates

Example Files:
ex_mxram.c , ex_icd.c, 16c74.h

Examples:
Chip Options:
#device PIC16C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10
#device %f=.
printf("%f",.5); //will print .5, without the directive it will print 0.5
ipep] #device DSPIC33FJ64GP306
ipep] #device PIC24FJ64GA002 ICD=TRUE
tpco] #device ADC=10
ierep] #device ICD=TRUE ADC=10

treo] Float Options-

tpep] #device %f=.
teep printf("%f",.5); //will print .5, without the directive it will print 0.5

135

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

Compilation mode selection:
#device CCS2 // This will set the ADC to the resolution of the part

See Also:

read adc()

device

Syntax:
__device__

Elements:
None

Description:

This preprocessor identifier is defined by the compiler with the base number of the current device
(from a #DEVICE). The base number is usually the number after the C in the part number. For
example, the PIC16C622 has a base number of 622.

Examples:
#if device ==71
SETUP_ADC_PORTS (All DIGITAL);
#endif

See Also:
#DEVICE

#if #else #elif #endif

Syntax:

#if expr
code

#elif expr //Optional, any number may be used
code

#else //Optional
code

#endif

Elements:
expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.

136

PreProcessor

Description:
The pre-processor evaluates the constant expression and if it is non-zero will process the
lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via
#define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined
and 0 if it is not.

== and != operators now accept a constant string as both operands. This allows for
compile time comparisons and can be used with GETENV() when it returns a string
result.

Example Files:
ex_extee.c

Examples:
#if MAX VALUE > 255
long value;
#else
int value;
#endif
#1if getenv (“"DEVICE”)=="PICl6F877"
//do something special for the PIC16F877
#endif

See Also:
#IFDEF, #IFNDEF, getenv()

#error

Syntax:

#ERROR text

#ERROR / warning text
#ERROR / information text

Elements:
text - is optional and may be any text

Description:

Forces the compiler to generate an error at the location this directive appears in the file. The text
may include macros that will be expanded for the display. This may be used to see the macro
expansion. The command may also be used to alert the user to an invalid compile time situation.

Example Files:
ex_psp.

137

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#1if BUFFER SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,y)

See Also:
#WARNING

#export (options)

Syntax:
#export(options)

Elements:

FILE=filename - The filename which will be generated upon compile. If not given, the
filname will be the name of the file you are compiling, with a .0 or .hex extension
(depending on output format).

Output Formats:

C - Indicates the file format is C source code. In this case the object is not exported but
rather a definition that allows another C program in the same memory space to call the
exported functions. It may be used by a bootloader that needs the loaded application to
call bootloader functions.

RELOCATABLE - CCS relocatable object file format. Must be imported or linked before
loading into a PIC. This is the default format when the #EXPORT is used.

HEX - Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

Exported Symbols:

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will be visible to modules
that import or link this relocatable object file. If neither ONLY or EXCEPT is used, all
symbols are exported.

EXCEPT=symbol+symbol+.....+symbol - All symbols except the listed symbols will be
visible to modules that import or link this relocatable object file. If neither ONLY or
EXCEPT is used, all symbols are exported.

138

PreProcessor

Exported Addresses:
RANGE-=start:stop - Only addresses in this range are included in the hex file.

OFFSET=address - Hex file address starts at this address (0 by default)
ODD - Only odd bytes place in hex file.
EVEN - Only even bytes placed in hex file.

Description:

This directive will tell the compiler to either generate a relocatable object file or a stand-
alone HEX binary. A relocatable object file must be linked into your application, while a
stand-alone HEX binary can be programmed directly into the device. The command line
compiler and the PCW IDE Project Manager can also be used to compile/link/build
modules and/or projects. Multiple #EXPORT directives may be used to generate multiple
hex files. This may be used for 18F8722 like devices with external memory.

Examples:
#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc?2 (void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but the object
this is being linked to can only see TimerTask ()

*/

See Also:
#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

file

Syntax:
_ file__

Elements:
None

139

PreProcessor

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename
of the file being compiled.

Example Files:
assert.h

Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILE " at line "™ _LINE __ "\r\n");

See Also:
line

filename

Syntax:
__filename___

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename
of the file being compiled.

Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILENAME " at line "™ LINE _ "\r\n");

See Also:
line

#fill rom

Syntax:
#fill_rom value

Elements:
value - is a constant 16-bit value

140

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:

This directive specifies the data to be used to fill unused ROM locations. When linking
multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Example Files:
ex_glint.c

Examples:
#fill rom 0x36

See Also:
#ROM

#fuses

Syntax:
#fuses options

Elements:
options vary depending on the device. A list of all valid options has been put at the top of
each devices .h file in a comment for reference. The PCW device edit utility can modify a
particular devices fuses. The PCW pull down menu VIEW | Valid fuses will show all fuses
with their descriptions. Some common options are:

e LP,XT,HS, RC

e WDT, NOWDT

¢ PROTECT, NOPROTECT

e PUT, NOPUT (Power Up Timer)

¢ BROWNOUT, NOBROWNOUT
Description:

This directive defines what fuses should be set in the part when it is programmed. This
directive does not affect the compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR option. SWAP has the special
function of swapping (from the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For example, the

oscillator fuses are set up by the #USE delay directive. The debug, No debug and
ICSPN Fuses are set by the #DEVICE ICD=directive.

141

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Some processors allow different levels for certain fuses. To access these levels, assign a
value to the fuse. For example, on the 18F452, the fuse PROTECT=6 would place the
value 6 into CONFIG5L, protecting code blocks 0 and 3.

When linking multiple compilation units be aware this directive applies to the final object
file. Later files in the import list may reverse settings in previous files.

To eliminate all fuses in the output files use: #FUSES none

To manually set the fuses in the output files use: #FUSES 1 = 0xC200 // sets config
word 1 to 0xC200

Example Files:
ex_sgw.c

Examples:
#fuses HS,NOWDT

#hexcomment

Syntax:
#HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements:
None

Description:
Puts a comment in the hex file.
Some programmers (MPLAB in particular) do not like comments at the top of the hex file.

Examples:
#hexcommentVersion3.1l - requires 20Mhz crystal

#id

Syntax:

#ID number 16

ieep] #ID number 32

#ID number, number, number, number

#ID "filename"
#|D CHECKSUM

142

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:

Number 16 is a 16 bit number, number is a 4 bit number. [pcojNumber 3 2 is a 32 bit
number, number is a 8 bit number. Filename is any valid PC filename and checksum is a
keyword.

Description:
This directive defines the ID word to be programmed into the part. This directive does
not affect the compilation but the information is put in the output file.

The first syntax will take a 16 (jrep; 32)-bit number and put one nibble (jecp; byte) in each
of the four ID words (jrep] bytes) in the traditional manner. The second syntax specifies
the exact value to be used in each of the four ID words (jeco] bytes).

When a filename is specified the ID is read from the file. The format must be simple text
with a CR/LF at the end. The keyword CHECKSUM indicates the device checksum
should be saved as the ID.

Example Files:
ex_cust.c

Examples:
#id 0x1234
#id "serial.num"
#id CHECKSUM

([PCD]
#id 0x12345678

#id 0x12, 0x34, 0x45, 0x67
#id "serial.num"

#id CHECKSUM

#ifdef #ifndef #else #endif

Syntax:
#ifdef id
code
#elif
code
#else //optiona
code
#endif

#ifndef id
code

#elif
code

143

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#else /loptiona
code
#endif

Elements:
id is a preprocessor identifier, code is valid C source code.

Description:

This directive acts much like the #IF except that the preprocessor simply checks to see if
the specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF checks
to see if defined and #IFNDEF checks to see if it is not defined.

Example Files:
ex_sgw.c

Examples:
#define debug // Comment line out for no debug

#ifdef DEBUG
printf ("debug point a");
#endif

See Also:
#IE

#ignore warnings

Syntax:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements:
warnings is one or more warning numbers separated by commas.

Description:

This function will suppress warning messages from the compiler. ALL indicates no warning will be
generated. NONE indicates all warnings will be generated. If numbers are listed then those
warnings are suppressed

Example Files:
ex_glint.c

144

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#ignore warnings 203
while (TRUE) {
#ignore warnings NONE

See Also:
Warning messages

#import(options)

Syntax:
#import(options)

Elements:
FILE=filname - The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will imported from the
specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

EXCEPT=symbol+symbol+.....+symbol - The listed symbols will not be imported from
the specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

RELOCATABLE - CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF - COFF file format from MPASM, C18 or C30.
HEX - Imported data is straight hex data.
RANGE-=start:stop - Only addresses in this range are read from the hex file.

LOCATION=id - The identifier is made a constant with the start address of the imported
data.

SIZE=id - The identifier is made a constant with the size of the imported data.

Description:

This directive will tell the compiler to include (link) a relocatable object with this unit
during compilation. Normally all global symbols from the specified file will be linked, but
the EXCEPT and ONLY options can prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

145

PreProcessor

Example Files:
ex_glint.c

Examples:
#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{
while (TRUE)
TimerTask () ;
}
/*timer.o is linked with this compilation, but only TimerTask() is
visible
in scope from this object.*/

See Also:
#EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

#include

Syntax:
#include <filename>
#include <"filename">

Elements:

filename - is a valid PC filename. It may include normal drive and path information. A file
with the extension ".encrypted" is a valid PC file. The standard compiler #include
directive will accept files with this extension and decrypt them as they are read. This
allows include files to be distributed without releasing the source code.

Description:

Text from the specified file is used at this point of the compilation. If a full path is not
specified the compiler will use the list of directories specified for the project to search for
the file. If the filename is in "™ then the directory with the main source file is searched
first. If the filename is in <> then the directory with the main source file is searched last.

Example Files:
ex_sqgw.c

Examples:
#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

146

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#inline

Syntax:
#inline

Elements:
None

Description:

Tells the compiler that the function immediately following the directive is to be implemented
INLINE. This will cause a duplicate copy of the code to be placed everywhere the function is
called. This is useful to save stack space and to increase speed. Without this directive the compiler
will decide when it is best to make procedures INLINE.

Example Files:
ex_cust.c

Examples:

#inline

swapbyte (int &a, int &b) {
int t;
t=a
a=b
b=t;

}

See Also:
#SEPARATE

#Hint XXXX

Syntax:
PCB, PCM, PCH

#INT_AD Analog to digital conversion complete

#INT_ADOF Analog to digital conversion timeout

#INT_BUSCOL Bus collision

#INT_BUSCOL2 | Bus collision 2 detected

#INT_BUTTON Pushbutton

#INT_CANERR An error has occurred in the CAN module

#INT_CANIRX An invalid message has occurred on the CAN bus

#INT_CANRXO CAN Receive buffer 0 has received a new message

147

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#INT_CANRX1 CAN Receive buffer 1 has received a new message
#INT_CANTXO CAN Transmit buffer 0 has completed transmission
#INT_CANTX1 CAN Transmit buffer 0 has completed transmission
#INT_CANTX2 CAN Transmit buffer 0 has completed transmission

#INT_CANWAKE

Bus Activity wake-up has occurred on the CAN bus

#INT_CCP1 Capture or Compare on unit 1
#INT_CCP2 Capture or Compare on unit 2
#INT_CCP3 Capture or Compare on unit 3
#INT_CCP4 Capture or Compare on unit 4
#INT_CCP5 Capture or Compare on unit 5
#INT_COMP Comparator detect
#INT_COMPO Comparator 0 detect
#INT_COMP1 Comparator 1 detect
#INT_COMP2 Comparator 2 detect
#INT_CR Cryptographic activity complete
#INT_EEPROM Write complete

#INT_ETH Ethernet module interrupt
#INT_EXT External interrupt

#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_EXT3 External interrupt #3
#INT_I2C 12C interrupt (only on 14000)
#INT_IC1 Input Capture #1
#INT_IC2QEI Input Capture 2 / QEI Interrupt
#IC3DR Input Capture 3 / Direction Change Interrupt
#INT_LCD LCD activity

#INT_LOWVOLT | Low voltage detected
#INT_LVD Low voltage detected
#INT_OSC_FAIL | System oscillator failed
#INT_OSCF System oscillator failed

148

PreProcessor

#INT_PMP Parallel Master Port interrupt
#INT_PSP Parallel Slave Port data in
#INT_PWMTB PWM Time Base

#INT_RA Port A any change on A0O_A5

#INT_RB Port B any change on B4-B7

#INT_RC Port C any change on C4-C7
#INT_RDA RS232 receive data available
#INT_RDAO RS232 receive data available in buffer 0
#INT_RDA1 RS232 receive data available in buffer 1
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTCC Timer 0 (RTCC) overflow

#INT_SPP Streaming Parallel Port Read/Write
#INT_SSP SPI or 12C activity

#INT_SSP2 SPI or 12C activity for Port 2

#INT_TBE RS232 transmit buffer empty
#INT_TBEO RS232 transmit buffer 0 empty
#INT_TBE1 RS232 transmit buffer 1 empty
#INT_TBEZ2 RS232 transmit buffer 2 empty
#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMER3 Timer 3 overflow

#INT_TIMER4 Timer 4 overflow

#INT_TIMERS Timer 5 overflow

#INT_ULPWU Ultra-low power wake up interrupt
#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific devices.

Check the devices .h file for a full list for a given device.

irep] PCD (PIC24/dsPIC devices)

#INT_AC1

Analog comparator 1 output change

#INT_AC2

Analog comparator 2 output change

149

PreProcessor

#INT_AC3 Analog comparator 3 output change
#INT_AC4 Analog comparator 4 output change
#INT_ADC1 ADC1 conversion complete
#INT_ADC2 Analog to digital conversion complete
#INT_ADCPO ADC pair 0 conversion complete
#INT_ADCP1 ADC pair 1 conversion complete
#INT_ADCP2 ADC pair 2 conversion complete
#INT_ADCP3 ADC pair 3 conversion complete
#INT_ADCP4 ADC pair 4 conversion complete
#INT_ADCP5 ADC pair 5 conversion complete
#INT_ADDRERR | Address error trap

#INT_C1RX ECAN1 Receive Data Ready
#INT_C1TX ECAN1 Transmit Data Request
#INT_C2RX ECAN2 Receive Data Ready
#INT_C2TX ECAN2 Transmit Data Request
#INT_CAN1 CAN 1 Combined Interrupt Request
#INT_CAN2 CAN 2 Combined Interrupt Request
#INT_CNI Input change natification interrupt
#INT_COMP Comparator event

#INT_CRC Cyclic redundancy check generator
#INT_DCI DCI transfer done

#INT_DCIE DCE error

#INT_DMAO DMA channel 0 transfer complete
#INT_DMA1 DMA channel 1 transfer complete
#INT_DMA2 DMA channel 2 transfer complete
#INT_DMA3 DMA channel 3 transfer complete
#INT_DMA4 DMA channel 4 transfer complete
#INT_DMAS DMA channel 5 transfer complete
#INT_DMAG DMA channel 6 transfer complete
#INT_DMAY DMA channel 7 transfer complete
#INT_DMAERR DMAC error trap

#INT_EEPROM Write complete

#INT_EX1 External Interrupt 1

#INT_EX4 External Interrupt 4

#INT_EXTO External Interrupt O

#INT_EXT1 External interrupt #1

#INT_EXT2 External interrupt #2

150

PreProcessor

#INT_EXT3 External interrupt #3
#INT_EXT4 External interrupt #4
#INT_FAULTA PWM Fault A
#INT_FAULTA2 PWM Fault A 2
#INT_FAULTB PWM Fault B
#INT_IC1 Input Capture #1
#INT_IC2 Input Capture #2
#INT_IC3 Input Capture #3
#INT_IC4 Input Capture #4
#INT_ICS Input Capture #5
#INT_IC6 Input Capture #6
#INT_IC7 Input Capture #7
#INT_IC8 Input Capture #8

#INT_LOWVOLT

Low voltage detected

#INT_LVD

Low voltage detected

#INT_MATHERR

Arithmetic error trap

#INT_MI2C Master 12C activity

#INT_MI2C2 Master2 12C activity
#INT_OC1 Output Compare #1
#INT_OC2 Output Compare #2
#INT_OC3 Output Compare #3
#INT_OC4 Output Compare #4
#INT_OC5 Output Compare #5
#INT_OC6 Output Compare #6
#INT_OC7 Output Compare #7
#INT_OCS8 Output Compare #8

#INT_OSC_FAIL

System oscillator failed

#INT_PMP Parallel master port

#INT_PMP2 Parallel master port 2

#INT_PWM1 PWM generator 1 time based interrupt
#INT_PWM2 PWM generator 2 time based interrupt
#INT_PWM3 PWM generator 3 time based interrupt
#INT_PWM4 PWM generator 4 time based interrupt

#INT_PWMSEM

PWM special event trigger

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2

151

PreProcessor

#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave 12C activity
#INT_SI2C2 Slave2 12C activity
#INT_SPI1 SPI1 Transfer Done
#INT_SPI1E SPI1E Transfer Done
#INT_SPI2 SPI2 Transfer Done
#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error
#INT_STACKERR | Stack Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMER3 Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG Timer 6 overflow
#INT_TIMER7 Timer 7 overflow
#INT_TIMERS8 Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UARTI1E UART1 error
#INT_UART2E UART?2 error

#INT_AUX Auxiliary memory ISR
Elements:

irco] NOCLEAR, LEVEL=n, HIGH, FAST, ALT, CLR_FIRST

Description:

These directives specify the following function is an interrupt function. Interrupt functions
may not have any parameters. Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW use the pull down VIEW | Valid
Ints

The compiler will generate code to jump to the function when the interrupt is detected. It
will generate code to save and restore the machine state, and will clear the interrupt
flag. To prevent the flag from being cleared add NOCLEAR after the #INT_xxxx. The
application program must call ENABLE_INTERRUPTS(INT_xxxXx) to initially activate the
interrupt along with the ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

152

PreProcessor

The keywords HIGH and FAST may be used with the PCH compiler to mark an interrupt
as high priority. A high-priority interrupt can interrupt another interrupt handler. An
interrupt marked FAST is performed without saving or restoring any registers. This should
be used as little as possible and save any registers that need to be saved manually.
Interrupts marked HIGH can be used normally. See #DEVICE for information on building
with high-priority interrupts.

rreo] An interrupt marked FAST uses the shadow feature to save registers. Only one
interrupt may be marked fast. Any registers used in the FAST interrupt beyond the
shadow registers is the responsibility of the user to save and restore.

Level=n - specifies the level of the interrupt. Higher numbers are a higher priority.

Enable_interrupts - specifies the levels that are enabled. The default is level 0 and level
7 is never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:

#INT_xxxx Normal (low priority) interrupt - Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - Compiler does a FAST save/restore of key registers. Only one is
allowed in a program.

#INT_xxxxLevel=3 - Interrupt is enabled when levels 3 and below are enabled.

#INT_GLOBAL - Compiler generates no interrupt code. User function is located at
address 8 for user interrupt handling.

#INT_xxxx ALT - Interrupt is placed in Alternate Interrupt Vector instead of Default
Interrupt Vector.

A summary of the different kinds of PIC18 interrupts:

#INT_xxxx - Normal (low priority) interrupt. Compiler saves/restores key registers. This
interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - High priority interrupt. Compiler DOES NOT save/restore key
registers. This interrupt will interrupt any normal interrupt in progress. Only one
is allowed in a program.

#INT_xxxx HIGH - High priority interrupt. Compiler saves/restores key registers. This
interrupt will interrupt any normal interrupt in progress.

#INT_xxxx NOCLEAR - The compiler will not clear the interrupt.

#INT_xxx CLEAR_FIRST - The compiler will clear the interrupt at the beginning of the
ISR instead of the end. The user code in the function should call clear_interrput(
) to clear the interrupt in this case.

153

PreProcessor
#INT_GLOBAL - Compiler generates no interrupt code. User function is located at
address 8 for user interrupt handling.

Some interrupts shown in the devices header file are only for the enable/disable
interrupts. For example, INT_RB3 may be used in enable/interrupts to enable pin B3.
However, the interrupt handler is #INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the handler is #INT_EXT.

Example Files:
ex_sisr.c and ex_stwt.c

Examples:
#int ad
adc_handler () {
adc_active=FALSE;
}

#int rtcc noclear
isr(){

}

[PCD]
#int ad
adc_handler () {

adc_active=FALSE;
}

#int timerl noclear
isr(){

}

See Also:
enable interrupts(), disable interrupts(), #INT DEFAULT, #INT GLOBAL, #PRIORITY

#int default

Syntax:
#int_default

Elements:
None

154

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

Description:

The following function will be called if the device triggers an interrupt and none of the
interrupt flags are set. If an interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

reo] A #INT_xxx handler has not been defined for the interrupt.

Examples:
#int default
default isr () {
printf ("unexplained interrupt\r\n");

}

See Also:
#INT xxxX, #INT global

#int global

Syntax:
#int_global

Elements:
None

Description:

This directive causes the following function to replace the compiler interrupt

dispatcher. The function is normally not required and should be used with great

caution. When used, the compiler does not generate start-up code or clean-up code, and
does not save the registers.

Example Files:
ex_glint.c

Examples:
#int global
isr () { //Will be located at location 4 for PICl6 devices
#asm
bsf isr flag
retfie
#endasm

}

See Also:
#HINT XXXX

155

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

line
Syntax:
__line__

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the line number of the file
being compiled.

Example Files:

assert.n
Examples:
if (index>MAX ENTRIES)
printf ("Too many entries, source file:" FILE "at line"

__LINE_ "\r\n");

See Also:
file

#list

Syntax:
#list

Elements:
None

Description:
#list begins inserting or resumes inserting source lines into the .Ist file after a #NOLIST.

Example Files:
16c74.h

Examples:
#NOLIST //Do not clutter up the list file
#include<cdriver.h>
#LIST

See Also:
#NOLIST

156

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

#line

Syntax:
#line number file name

Elements:
Number - is non-negative decimal integer. File name is optional.

Description:
The C pre-processor informs the C Compiler of the location in your source code. This
code is simply used to change the value of _ LINE__and __ FILE__ variable.

Examples:
void main () {
#line 10 //specifies the line number that should be reported
//for the following line of input

#line 7"hello.c" //line number in the source file hello.c and it sets
//the line 7 as current line and hello.c as current
file

#locate

Syntax:
#locate id=x

Elements:
id - is a C variable
X - is a constant memory address

Description:

#LOCATE allocates a C variable to a specified address. If the C variable was not
previously defined, it will be defined as an INT8.

A special form of this directive may be used to locate all A functions local variables
starting at a fixed location.

Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Example Files:
ex_glint.c

157

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
//This will locate the float variable at 50-53
//and C will not use this memory for other
//variables automatically located.
float x:

#locate x=0x50
[PCD]

float x:
#locate x=0x800

See Also:
#byte, #bit, #reserve, #word, Named Regqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#module

Syntax:
#module

Elements:
None

Description:

All global symbols created from the #MODULE to the end of the file will only be visible
within that same block of code (and files #INCLUDE within that block). This may be used
to limit the scope of global variables and functions within include files. This directive also
applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of variables
and functions as in the standard C methodology. #MODULE does add some benefits in
that pre-processor #DEFINE can be given scope, which cannot normally be done in
standard C methodology.

Examples:
int GetCount (void);
vold SetCount (int newCount) ;
#MODULE
int g count;
#define G _COUNT_ MAX 100
int GetCount (void) {return(g_count);}
void SetCount (int newCount) {
if (newCount>G COUNT MAX)
newCount=G_COUNT_MAX;
g_count=newCount;
}
/%

158

PreProcessor

the functions GetCount () and SetCount () have global scope, but the
variable g count and the #define G COUNT MAX only has scope to this
file.

*/

See Also:
#EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

#nolist

Syntax:
#nolist

Elements:
None

Description:
Stops inserting source lines into the .lIst file (until a #LST).

Example Files:
16c74.h

Examples:
#NOLIST //Do not clutter up the list list
#include<cdriver.h>
#LIST

See Also:
#LIST

Elements:
X - is the clock’s speed and can be 1 Hz to 100 Mhz.

Description:
Used instead of the #use delay(clock=x)

Examples:
#include<18F4520.h>
#device ICD=TRUE
#0CS 20 Mhz

159

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

#use rs232 (debugger)

void () {

}

See Also:
#USE DELAY

#opt
Syntax:
#opt n

Elements:

PreProcessor

All Devices: n is the optimization level 1-9 or by using the word "compress" for PIC18

and Enhanced PIC16 families.
ireo] All Devices: n is the optimization level 0-9

Description:

The optimization level is set with this directive. This setting applies to the entire program
and may appear anywhere in the file. The default is 9 for normal. When Compress is
specified the optimization is set to an extreme level that causes a very tight ROM image,
the code is optimized for space, not speed. Debugging with this level my be more

difficult.

Examples:
#opth

#org
Syntax:
#ORG start, end
or
#0ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:

start - is the first ROM location (word address) to use.

160

PreProcessor

end - is the last ROM location.

segment - is the start ROM location from a previous #ORG

Description:

This directive will fix the following function, constant or ROM declaration into a specific
ROM area. End may be omitted if a segment was previously defined if you only want to
add another function to the segment.

Follow the ORG with a { } to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local variables and
scratch variables are placed in low memory. This should only be used if the ORG'd
function will not return to the caller. The RAM used will overlap the RAM of the main
program. Add a AUTO=0 at the end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user
and compiler generated from this point in the file until a #ORG DEFAULT is encountered
(no address range). If a compiler function is called from the generated code while
DEFAULT is in effect the compiler generates a new version of the function within the
specified address range.

#0ORG may be used to locate data in ROM. Because CONSTANT are implemented as
functions the #ORG should proceed the CONSTANT and needs a start and end address.
For a ROM declaration only the start address should be specified.

When linking multiple compilation units be aware this directive applies to the final object
file. It is an error if any #ORG overlaps between files unless the #ORG matches exactly.

Example Files:
loader.c

Examples:
#ORG 0x1E00, OxX1FFF
MyFunc () {
//This function located at 1EOQO0
}

#ORG 0x1E00
Anotherfunc () {
// This will be somewhere 1E00-1F00

}
#ORG 0x800, 0x820 {} //Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl NO0=12345;

#ORG 0x1C00, Ox1COF //This ID will be at 1C00
161

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

CHAR CONST ID[10}= {"123456789"}; //Note some extra code will

#ORG
Void

}

//proceed the 123456789

0x1F00, Ox1FFO
loader () {

See Also:

#ROM

#pin select

Syntax:

#PIN_SELECT function=pin_xx

Elements:
function - is the Microchip defined pin function name, such as:

U1RX(UART1 receive)
INT1(external interrupt 1)
T2CK (timer 2 clock)

IC1 (input capture 1)
OC1 (output capture 1)

PCB, PCM, PCH

INT1 External Interrupt 1

INT2 External Interrupt 2

INT3 External Interrupt 3

TOCK Timer0 External Clock

T3CK Timer3 External Clock

CCP1 Input Capture 1

CCP2 Input Capture 2

T1G Timerl Gate Input

T3G Timer3 Gate Input

U2RX EUSART2 Asynchronous Receive/Synchronous Receive (also named: RX2)

U2CK EUSART2 Asynchronous Clock Input

SDI2 SPI2 Data Input

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select Input

FLTO PWM Fault Input

TOCKI Timer0 External Clock Input

T3CKI Timer3 External Clock Input

RX2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also named:
TX2)

NULL NULL

162

PreProcessor

ClouT Comparator 1 Output

C20UT Comparator 2 Output

u2TXx EUSART2 Asynchronous Transmit/ Asynchronous Clock Output (also named:
TX2)

uz2DT EUSART2 Synchronous Transmit (also named: DT2)

SDO2 SPI2 Data Output

SCK20UT SPIC2 Clock Output

SS20UT SPI2 Slave Select Output

ULPOUT Ultra Low-Power Wake-Up Event

P1A ECCP1 Compare or PWM Output Channel A

P1B ECCP1 Enhanced PWM Output, Channel B

P1C ECCP1 Enhanced PWM Output, Channel C

P1D ECCP1 Enhanced PWM Output, Channel D

P2A ECCP2 Compare or PWM Output Channel A

P2B ECCP2 Enhanced PWM Output, Channel B

P2C ECCP2 Enhanced PWM Output, Channel C

P2D ECCP1 Enhanced PWM Output, Channel D

TX2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also named:
TX2)

DT2 EUSART?2 Synchronous Transmit (also named: U2DT)

SCK2 SPI2 Clock Output

SSDMA SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For example: PIN_C7, PIN_BO, PIN_D3, etc.

PCD (PIC24/dsPIC devices)

NULL NULL

C10UT Comparator 1 Output
C20UT Comparator 2 Output
C30UT Comparator 3 Output
C40UT Comparator 4 Output
UlTX UART1 Transmit

UL1RTS UART1 Request to Send
U2TX UART2 Transmit

U2RTS UART2 Request to Send
U3TX UART3 Transmit

U3RTS UART3 Request to Send
U4TX UART4 Transmit

U4RTS UART4 Request to Send
SDO1 SPI1 Data Output
SCK10UT SPI1 Clock Output
SS10UT SPI1 Slave Select Output
SDO2 SPI2 Data Output
SCK20UT SPI2 Clock Output
SS20UT SPI2 Slave Select Output
SDO3 SPI3 Data Output

163

PreProcessor

SCK30UT SPI3 Clock Output

SS30UT SPI3 Slave Select Output
SDO4 SPI4 Data Output
SCK40UT SPI4 Clock Output

SS40UT SPI4 Slave Select Output
OC1 Output Compare 1

OC2 Output Compare 2

OC3 Output Compare 3

OC4 Output Compare 4

OC5 Output Compare 5

OC6 Output Compare 6

OC7 Output Compare 7

OC8 Output Compare 8

OC9 Output Compare 9

OC10 Output Compare 10

OC11 Output Compare 11

OC12 Output Compare 12

OC13 Output Compare 13

OC14 Output Compare 14

0OC15 Output Compare 15

OC16 Output Compare 16

C1TX CANL1 Transmit

C2TX CAN2 Transmit

CSDO DCI Serial Data Output
CSCKOUT DCI Serial Clock Output
COFSOUT DCI Frame Sync Output
UPDN1 QEI1 Direction Status Output
UPDN2 QEI2 Direction Status Output
CTPLS CTMU Output Pulse
SYNCO1 PWM Synchronization Output Signal
SYNCO2 PWM Secondary Synchronization Output Signal
REFCLKO REFCLK Output Signal
CMP1 Analog Comparator Output 1
CMP2 Analog Comparator Output 2
CMP3 Analog Comparator Output 3
CMP4 Analog Comparator Output 4
PWM4H PWM4 High Output

PWMA4L PWM4 Low Output
QEI1LCCMP QEI1 Counter Comparator Output
QEI2CCMP QEI2 Counter Comparator Output
MDOUT DSM Modulator Output
DCIDO DCI Serial Data Output
DCISCKOUT | DCI Serial Clock Output
DCIFSOUT DCI Frame Sync Output
INT1 External Interrupt 1 Input

164

PreProcessor

INT2 External Interrupt 2 Input
INT3 External Interrupt 3 Input
INT4 External Interrupt 4 Input
T1CK Timer 1 External Clock Input
T2CK Timer 2 External Clock Input
T3CK Timer 3 External Clock Input
TACK Timer 4 External Clock Input
T5CK Timer 5 External Clock Input
T6CK Timer 6 External Clock Input
T7CK Timer 7 External Clock Input
T8CK Timer 8 External Clock Input
TICK Timer 9 External Clock Input
IC1 Input Capture 1

IC2 Input Capture 2

IC3 Input Capture 3

IC4 Input Capture 4

IC5 Input Capture 5

IC6 Input Capture 6

IC7 Input Capture 7

IC8 Input Capture 8

IC9 Input Capture 9

IC10 Input Capture 10

IC11 Input Capture 11

IC12 Input Capture 12

IC13 Input Capture 13

IC14 Input Capture 14

IC15 Input Capture 15

IC16 Input Capture 16

C1RX CAN1 Receive

C2RX CAN2 Receive

OCFA Output Compare Fault A Input
OCFB Output Compare Fault B Input
OCFC Output Compare Fault C Input
U1RX UART1 Receive

U1CTS UART1 Clear to Send

U2RX UART?2 Receive

U2CTS UART2 Clear to Send

U3RX UART3 Receive

U3CTS UART3 Clear to Send

U4RX UART4 Receive

U4CTS UARTA4 Clear to Send

SDI1 SPI1 Data Input

SCK1IN SPI1 Clock Input

SS1IN SPI1 Slave Select Input
SDI2 SPI2 Data Input

165

PreProcessor

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select Input

SDI3 SPI3 Data Input

SCK3IN SPI3 Clock Input

SS3IN SPI3 Slave Select Input

SDl4 SPI4 Data Input

SCKA4IN SPI4 Clock Input

SS4IN SPI4 Slave Select Input

CSDI DCI Serial Data Input

CSCK DCI Serial Clock Input

COFS DCI Frame Sync Input

FLTA1 PWM1 Fault Input

FLTA2 PWM2 Fault Input

QEA1l QEI1 Phase A Input

QEA2 QEI2 Phase A Input

QEB1 QEI1 Phase B Input

QEB2 QEI2 Phase B Input

INDX1 QEI1 Index Input

INDX2 QEI2 Index Input

HOME1 QEI1 Home Input

HOME2 QEI2 Home Input

FLT1 PWM1 Fault Input

FLT2 PWM2 Fault Input

FLT3 PWM3 Fault Input

FLT4 PWM4 Fault Input

FLT5 PWMS5 Fault Input

FLT6 PWM6 Fault Input

FLT7 PWM7 Fault Input

FLT8 PWMS8 Fault Input

SYNCI1 PWM Synchronization Input 1

SYNCI2 PWM Synchronization Input 2

DCIDI DCI Serial Data Input

DCISCKIN DCI Serial Clock Input

DCIFSIN DCI Frame Sync Input

DTCMP1 PWM Dead Time Compensation 1 Input

DTCMP2 PWM Dead Time Compensation 2 Input

DTCMP3 PWM Dead Time Compensation 3 Input

DTCMP4 PWM Dead Time Compensation 4 Input

DTCMP5 PWM Dead Time Compensation 5 Input

DTCMP6 PWM Dead Time Compensation 6 Input

DTCMP7 PWM Dead Time Compensation 7 Input
Description:

When using PPS chips a #PIN_SELECT must be appear before these peripherals can be
used or referenced.

166

PreProcessor

irepjON devices that contain Peripheral Pin Select (PPS), this allows the programmer to
define which pin a peripheral is mapped to.

Examples:
#pin select ULTX=PIN C6
#pin_select UlRX=PIN C7
#pin select INT1=PIN BO

See Also:

pin_select()

pcb

Syntax:
__pcb__

Elements:
None

Description:
The PCB compiler defines this pre-processor identifier. It may be used to determine if the
PCB is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef pcb
#device PIC16C54
#endif

See Also:
PCM _, PCH , PCD

pcd

Syntax:
__pcd__

Elements:
None

167

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:
The PCD compiler defines this pre-processor identifier. It may be used to determine if the
PCD is doing the compilation.

Example Files:
ex_sqgw.c

Examples:
#ifdef pcd
#device dsPIC33FJ256MC710
#endif

See Also:
PCB _, PCM_, PCH

pcm

Syntax:
__pcm__

Elements:
None

Description:
The PCM compiler defines this pre-processor identifier. It may be used to determine if the
PCM is doing the compilation.

Example Files:
eX_Sgw.c

Examples:
#ifdef pcm
#device PICl6C71
#endif

See Also:
PCB , PCH , PCD

pch

Syntax:
__pch__

168

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
None

Description:
The PCH compiler defines this pre-processor identifier. It may be used to determine if the
PCH is doing the compilation.

Example Files:
ex_sqgw.c

Examples:
#ifdef pch
#device PIC18F452
#endif

See Also:
PCM , PCM_, PCD

#pragma

Syntax:
#pragma cmd

Elements:
cmd - is any valid pre-processor directive.

Description:

This directive is used to maintain compatibility between C compilers. This compiler will
accept this directive before any other pre-processor command. In no case does this
compiler require this directive.

Example Files:
ex_cust.c

Examples:
#pragma device PIC16C54

See Also:

#priority
Syntax:
#priority ints

169

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
ints - is a list of one or more interrupts separated by commas.

exports - makes the functions generated from this directive available to other
compilation units within the link.

Description:

The priority directive may be used to set the interrupt priority. The highest priority items
are first in the list. If an interrupt is active it is never interrupted. If two interrupts occur at
around the same time then the higher one in this list will be serviced first. When linking
multiple compilation units be aware only the one in the last compilation unit is used.

Examples:
#priority rtc c.rb

See Also:
#HINT XXXX

#profile

Syntax:
#profile options

Elements:
options - may be one of the following:
functions - Profiles the start/end of functions and all profileout() messages.

functions, parameters - Profiles the start/end of functions, parameters sent to
functions, and all profileout() messages.

profileout - Only profile profileout() messages.
paths - Profiles every branch code.
off - Disable all code profiling.

on - Re-enables the code profiling that was previously disabled with a #profile off
command. This will use the last options before disabled with the off
command.

Description:

Large programs on the microcontroller may generate lots of profile data, which may make
it difficult to debug or follow. By using #profile the user can dynamically control which
points of the program are being profiled, and limit data to what is relevant to the user.

Example Files:

ex_profile.c
170

Examples:
#profile off
void BigFunction (void)

{

PreProcessor

//BigFunction code goes here since #profile off was called above.

//No profiling will happen even for the functions called by

BigFunction() .

}

#profile on

See Also:

#use profile(), profileout(), Code Profile overview

#recursive

Syntax:
#recursive

Elements:
None

Description:

Directs the compiler that the procedure immediately following the directive will be

recursive.

Examples:
#recursive
int factorial (int num) {
if (num <=1)
return 1;
return num * factorial (num-1);

#reserve

Syntax:

#reserve address

#reserve address, address, address
#reserve start:end

Elements:
address - is a RAM address.

171

PreProcessor

start - is the first address.

end - is the last address.

Description:

This directive allows RAM locations to be reserved from use by the compiler. #/RESERVE
must appear after the #DEVICE otherwise it will have no effect. When linking multiple
compilation units be aware this directive applies to the final object file.

Example Files:
ex_cust.c

Examples:
#device PIC16C74
#reserve 0x60:0X6f

[PCcD]
#device dsPIC30F2010
#reserve 0x800:0x80B3

See Also:
#ORG

#rom

Syntax:
#rom address = {list}

Elements:
address - is the same address used in the device datasheet (Byte for PIC18 and Word
for all others)

list - is a list of words separated by commas.
Description:

Allows the insertion of data into the .HEX file. For example, this may be used to program
the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive creates
a segment for the data, resulting in an error if a #ORG is over the same area. The #ROM
data will also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char as the
type treats each item as 7 bits packing 2 chars into every PCM 14-bit word.

172

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

When linking multiple compilation units be aware this directive applies to the final object
file.

Some special forms of this directive may be used for verifying program memory:
#ROM address = checksum - This will put a value at address such that the entire
program memory will sum to 0x1248.

#ROM address = crc16 - This will put a value at address that is a crc16 of all the
program memory except the specified address.

#ROM address = crcl16(start, end) - This will put a value at address that is a crc16
of all the program memory from start to end.

#ROM address = crc8 - This will put a value at address that is a crc16 of all the
program memory except the specified address.

Example Files:
ex_glint.c

Examples:
#rom getenv ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={"(c)CCS,2010"}

See Also:
#ORG

#separate

Syntax:
#separate
[Pco] #Separate options

Elements:
[pcp] Options - options include:
STDCALL - Use the standard Microchip calling method, as used in C30. W0-W7
is used for function parameters, rest of the working registers are not
touched, remaining function parameters are pushed onto the stack.

ARG=Wx:Wy - Use the working registers Wx to Wy to hold function parameters.
Any remaining function parameters are pushed onto the stack.

DND=Wx:WYy - Function will not change Wx to Wy working registers.

AVOID=Wx:Wy — Function will not use Wx to Wy working registers for function
parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.

173

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Use STDCALL with the ARG, DND or AVOID parameters.

If one of these options is not specified, the compiler will determine the best configuration,
and will usually not use the stack for function parameters (usually scratch space is
allocated for parameters).

Description:

Directs the compiler that the procedure immediately following the directive is to be
implemented separately. This is useful to prevent the compiler from automatically
making a procedure inline. This will save ROM space, but it does use more stack space.
The compiler will make all procedures marked separate, separated as requested, even if
there is not enough stack space to execute.

Example Files:
ex_cust.c

Examples:
#separate
swapbyte (int*a, int*b) {
int t;
t=*a
*a=*b;
*b=t;
}

[PCD]
#separate ARG=WO:W7 AVOID=W8:W1l5 DND=W8:W15
swapbyte (int*a, int*b) {
int t;
t=*a
*a=*Db;
*b=t;
}

See Also:
#INLINE

#serialize

Syntax:
#SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -

#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt",
prompt="text", log="filename.txt")

174

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array.

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address specified.
string=x - The integer x is the number of bytes to be written to address specified.
unicode=n - If nis a 0, the string format is normal unicode. For n>0 n indicates the
string
number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number from, and this file
is updated by the ICD programmer. It is assumed this is a one line file with the
serial number. The programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from, and this
file is updated by the ICD programmer. It is assumed this is a file one serial
number per line. The programmer will read the first line then delete that line from
the file.

next="x" - The serial number X is used for the first load, then the hex file is updated to
increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial number on each load.
If used with one of the above three options then the default value the user may
use is picked according to the above rules.

log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name
and serial number each time the part is programmed. If no id=xxx is specified
then this may be used as a simple log of all loads of the hex file.

Description:
Assists in making serial numbers easier to implement when working with CCS ICD units.
Comments are inserted into the hex file that the ICD software interprets.

Examples:
//Prompt user for serial number to be placed
//at address of serialNumA
//Default serial number = 200int8int8 const serialNumA=100;
//#serialize (id=serialNumA, next="200",prompt="Enter the serial number")

//Adds serial number log in seriallog.txt
//#serialize (id=serialNumA, next="200",prompt="Enter the serial number",

175

PreProcessor

//log="seriallog.txt")

//Retrieves serial number from serials.txt
//#serialize (id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte
//#serialize (dataee=0,binary=1,next="45", prompt="Put in Serial number")

//Place string serial number at EEPROM address 0, reserving 2 bytes
//#serialize (dataee=0, string=2,next="AB",prompt="Put in Serial
number")

#task
(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The
#TASK directive is needed just before each RTOS task to enable the compiler to tell
which functions are RTOS tasks. An RTOS task cannot be called directly like a regular
function can.

Syntax:
#task (options)

Elements:
options are separated by comma and may be:
rate=time - Where time is a number followed by s, ms, us, or ns. This specifies how
often the task will execute.

max=time - Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.

gueue=bytes - Specifies how many bytes to allocate for this task's incoming
messages. The default value is 0.

enabled=value - Specifies whether a task is enabled or disabled by rtos_run(). True
for enabled, false for disabled. The default value is enabled.

Description:
This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a
multiple of the minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one
execution of the task. The time specified in max must be equal to or less than the time

176

PreProcessor

specified in the minor_cycle option of the #USE RTOS directive before the project will
compile successfully. The compiler does not have a way to enforce this limit on processor
time, so a programmer must be careful with how much processor time a task uses for
execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value is
0.

Examples:
#task (rate=1s, max=20ms, queue=5)

See Also:
#USE RTOS

time
Syntax:
__time__

Elements:
None

Description:
This pre-processor identifier is replaced at compile time with the time of the compile in
the form: "hh:mm:ss"

Examples:
printf ("Software was compiled on");
printf(TIME);

#todo
Syntax:
#todo text

Elements:
text is free text

Description:
This directive documents in the source code items that the developer needs to work on.

Example Files:
None

177

PreProcessor

Examples:
#todo Verify the math works in convert adc values

See Also:
PCW Overview

#type
Syntax:
#TYPE standard-type=size

#TYPE default=area
#TYPE unsigned

#TYPE signed

rep] #TYPE char=signed
ireo] #TYPE char=unsigned
ipeo] #TYPE ARG=Wx:Wy
irco] #TYPE DND=Wx:Wy
ipeo] #TYPE AVOID=Wx:Wy
ireo] #TYPE RECURSIVE
ipco] #TYPE CLASSIC

Elements:

standard-type - is one of the C keywords short, int, long, or default

rcp) Standard-type - is one of the C keywords short, int, long, float, or double
size -is 1,8,16, or 32

[pcp] Size - is 1,8,16, 48, or 64

area - is a memory region defined before the #TYPE using the addressmod directive
rep] WX: WY - is a range of working registers (example: W0, W1, W15, etc)

Description:

By default the compiler treats SHORT as one bit / [pcp) 8 bits , INT as 8 / [eepj 16 bits, and
LONG as 16 / [rep) 32 bits. The traditional C convention is to have INT defined as the
most efficient size for the target processor. This is why it is 8-bit on PIC devices or [pcp]
16-bits on dsPIC/PIC24 ® . In order to help with code compatibility a #TYPE directive
may be used to allow these types to be changed. #TYPE can redefine these keywords.

178

PreProcessor

Note that the commas are optional. Since #TYPE may render some sizes inaccessible
(like a one bit int in the above) four keywords representing the four ints may always be
used: INT1, INT8, INT16, and INT32.

Note: CCS example programs and include files may not work correctly when using
#TYPE in the program.

irep] Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable
storage. This is done by specifying default=area where area is a addressmod address
space.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default
data type.

irep] The ARG parameter tells the compiler that all functions can use those working
registers to receive parameters. The DND parameters tells the compiler that all functions
should not change those working registers (not use them for scratch space). The AVOID
parameter tells the compiler to not use those working registers for passing variables to
functions. If you are using recursive functions, then it will use the stack for passing
variables when there is not enough working registers to hold variables; if you are not
using recursive functions, the compiler will allocate scratch space for holding variables if
there is not enough working registers. #SEPARATE can be used to set these parameters
on an individual basis.

ircp] The RECURSIVE option tells the compiler that ALL functions can be recursive.
#RECURSIVE can also be used to assign this status on an individual basis.

Example Files:
ex_cust.c

Examples:
#TYPE SHORT= 8, INT= 16, LONG= 32

#TYPE default=area

addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in

// 0x100-0x1FF

#type default= // restores memory allocation

179

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

// back to normal
#TYPE SIGNED

void main ()

{

PreProcessor

int variablel; // variablel can only take values from -128 to

127

}

[PCD]
#TYPE SHORT=1, INT=8, LONG=16, FLOAT=48

#TYPE default=area

addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in

// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

#TYPE RECURSIVE
#TYPE ARG=WO:W7
#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

void main ()

{

int variablel; // variablel can only take values from -128 to

127

#undef

Syntax:
#undef id

Elements:
id - is a pre-processor id defined via #DEFINE

180

PreProcessor

Description:
The specified pre-processor ID will no longer have meaning to the pre-processor.

Examples:
#if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

See Also:
#DEFINE

unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string

Description:
This macro will convert a standard ASCII string to a Unicode format string by inserting a

\000 after each character and removing the normal C string terminator. For example:
_unicode ("ABCD")

will return: "A\OOB\000OC\OOOD" (8 bytes total with the terminator)

Since the normal C terminator is not used for these strings you need to do one of the following for
variable length strings:

string = unicode (KEYWORD) "\000\000";
OR

string = unicode (KEYWORD) ;

string size = sizeof (unicode (KEYWORD)) ;

Example Files:
usb_desc hid.h

Examples:
#define USB DESC_STRING TYPE 3

#define USB_STRING (x) (sizeof(unicode(x))+2), USB_DESC STRING TYPE,

__unicode (x)

#define USB ENGLISH STRING 4,USB DESC_STRING TYPE,0x09,0x04
//Microsoft defined for US

English

char const USB STRING DESC[]=][

181

PreProcessor

USB_ENGLISH STRING;

USB_STRING ("CCS") ;

USB_STRING ("CCS HID DEMO")
}i

#use capture

Syntax:
#use capture (options)

Elements:
ICx/CCPx - Which CCP/Input Capture module to us.

INPUT = PIN_xx - Specifies which pin to use. Useful for device with remappable pins,
this will cause compiler to automatically assign pin to peripheral.

TIMER=x - Specifies the timer to use with capture unit. If not specified default to timer 1
for PCM and PCH compilers and timer 3 for PCD compiler.

TICK=x - The tick time to setup the timer to. If not specified it will be set to fastest as
possible or if same timer was already setup by a previous stream it will be set to
that tick time. If using same timer as previous stream and different tick time an
error will be generated.

FASTEST - Use instead of TICK=x to set tick time to fastest as possible.
SLOWEST - Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH - PCD only. Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

PRE=x - Specifies number of rising edges before capture event occurs. Valid options are
1, 4 and 16, default to 1 if not specified. Options 4 and 16 are only valid when
using CAPTURE_RISING, will generate an error is used with
CAPTURE_FALLING or CAPTURE_BOTH.

rep] ISR=x - Specifies the number of capture events to occur before generating capture
interrupt. Valid options are 1, 2, 3 and 4, defaults to 1 is not specified. Option 1
is only valid option when using CAPTURE_BOTH, will generate an error if trying
to use 2, 3 or 4 with it.

182

PreProcessor

STREAM=id - Associates a stream identifier with the capture module. The identifier may
be used in functions like get_capture_time().

DEFINE=id - Creates a define named id which specifies the number of capture per
second. Default define name if not specified is CAPTURES_PER_SECOND.
Define name must start with an ASCII letter 'A' to 'Z', an ASCI! letter 'a' to 'z’ or
an ASCII underscore ('_").

Description:

This directive tells the compiler to setup an input capture on the specified pin using the
specified settings. The #USE DELAY directive must appear before this directive can be
used. This directive enables use of built-in functions such as get_capture_time() and
get_capture_event().

Examples:
#USE CAPTURE (INPUT=PIN_C2 , CAPTURE RISING, TIMER=1, FASTEST)

See Also:
get _capture time(), get capture event()

#use delay

Syntax:
#use_delay (options)

Elements:
Options - may be any of the following separated by commas:
clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following
denominations: M, MHZ, K, KHZ. This specifies the clock the CPU runs at.
Depending on the PIC this is 2 or 4 times the instruction rate. This directive is
not needed if the following type=speed is used and there is no frequency
multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are
valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal,
int (same as internal) or rc. The compiler will automatically set the oscillator
configuration bits based upon your defined type. If you specified internal, the
compiler will also automatically set the internal oscillator to the defined speed.
Configuration fuses are modified when this option is used. Speed is the input
frequency.

restart_wdt will restart the watchdog timer on every delay _us() and delay_ms() use.

183

PreProcessor

clock_out when used with the internal or oscillator types this enables the clockout pin to
output the clock.

fast_start some chips allow the chip to begin execution using an internal clock until the
primary clock is stable.

lock some chips can prevent the oscillator type from being changed at run time by the
software.

USB or USB_FULL for devices with a built-in USB peripheral. When used with the
type=speed option the compiler will set the correct configuration bits for the USB
peripheral to operate at Full-Speed.

USB_LOW for devices with a built-in USB peripheral. When used with the type=speed
option the compiler will set the correct configuration bits for the USB peripheral to
operate at Low-Speed.

PLL_WAIT for devices with a PLL and a PLL Ready Status flag to test. When a PLL
clock is specified it will cause the compiler to poll the ready PLL Ready Flag and
only continue program execution when flag indicates that the PLL is ready.

ACT or ACT=type for device with Active Clock Tuning, type can be either USB or SOSC.
If only using ACT type will default to USB. ACT=USB causes the compiler to
enable the active clock tuning and to tune the internal oscillator to the USB clock.
ACT=SOSC causes the compiler to enable the active clock tuning and to tune
the internal oscillator to the secondary clock at 32.768 kHz. ACT can only be
used when the system clock is set to run from the internal oscillator.

rep] AUX: type=speed Some chips have a second oscillator used by specific periphrials
and when this is the case this option sets up that oscillator.

ireo] PLL_WAIT when used with a PLL clock, it causes the compiler to poll PLL ready flag
and to only continue program execution when flag indicates that the PLL is
ready.

Description:

Tells the compiler the speed of the processor and enables the use of the built-in
functions: delay_ms() and delay_us(). Will also set the proper configuration bits, and if
needed configure the internal oscillator. Speed is in cycles per second. An optional
restart_wdt may be used to cause the compiler to restart the WDT while delaying. When
linking multiple compilation units, this directive must appear in any unit that needs timing
configured (delay_ms(), delay_us(), UART, SPI).

In multiple clock speed applications, this directive may be used more than once. Any
timing routines (delay_ms(), delay_us(), UART, SPI) that need timing information will use
the last defined #USE DELAY (For initialization purposes, the compiler will initialize the
configuration bits and internal oscillator based upon the first #USE DELAY.

184

PreProcessor

Example Files:
ex_sqgw.c

Examples:
// set timing config to 32KHz, User sets the fuses
// on delay us() and delay ms()
#use delay (clock=32000, RESTART WDT)

//the following 4 examples all configure the timing
library

//to use a 20Mhz clock, where the source is a
crystal.
#use delay (crystal=20000000)
#use delay (xtal=20,000,000)
#use delay(crystal=20Mhz)
#use delay(clock=20M, crystal)

//application is using a 10Mhz oscillator, but using
the 4x PLL

//to upscale it to 40Mhz. Compiler will set config
bits.
#use delay(oscillator=10Mhz, clock=40Mhz)

//application will use the internal oscillator at
8MHz .
//compiler will set config bits, and set the internal
//oscillator to 8MHz.
#use delay(internal=8Mhz)

See Also:
delay ms(), delay us()

#use dynamic memory

Syntax:
#use dynamic_memory

Elements:
None

Description:
This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD
object. _DYNAMIC_HEA is the loation where the first free space is allocated.

Example Files:
ex_malloc.c

185

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#USE DYNAMIC MEMORY
void main () {

}

#use fast io

Syntax:
#use fast_io (port)

Elements:
port-isA,B,C,D,E, F,G,H,JorALL

Description:

Affects how the compiler will generate code for input and output instructions that

follow. This directive takes effect until another #use xxxx_10O directive is

encountered. The fast method of doing 1/0 will cause the compiler to perform 1/O without
programming of the direction register. The compiler's default operation is the opposite of
this command, the direction 1/0 will be set/cleared on each I/O operation. The user must
ensure the direction register is set correctly via set_tris_X(). When linking multiple
compilation units be aware this directive only applies to the current compilation unit.

Example Files:
ex_cust.c

Examples:
#use fast io(A)

See Also:
#USE FIXED 10, #USE STANDARD 10, set _tris_X() , General Purpose 1/O

#use fixed io

Syntax:
#use fixed_io (port_outputs=pin, pin?)

Elements:
value - is a constant 16-bit value

Description:

This directive affects how the compiler will generate code for input and output instructions
that follow. This directive takes effect until another #USE XXX 1O directive is
encountered. The fixed method of doing 1/0 will cause the compiler to generate code to
make an I/O pin either input or output every time it is used. The pins are programmed

186

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

according to the information in this directive (not the operations actually performed). This
saves a byte of RAM used in standard 1/0. When linking multiple compilation units be
aware this directive only applies to the current compilation unit.

Examples:

#use fixed io(a outputs=PIN A2, PIN A3)

See Also:

#USE FAST 10, #USE STANDARD 10, General Purpose /O

#use i2c

Syntax:
#use i2c (options)

Elements:

options - are separated by commas and may include the following:

MASTER

Sets to the master mode

MULTI_MASTER

Set the multi_master mode

SLAVE

Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast 12C specification.
FAST=nnnnnn Sets the speed to nnnnnn hz

SLOW Use the slow 12C specification

RESTART_WDT

Restart the WDT while waiting in 12C_READ

FORCE_HW

Use hardware [12C functions.

FORCE_SW

Use software 12C functions.

NOFLOAT_HIGH

Does not allow signals to float high, signals are driven from low
to high

SMBUS Bus used is not 12C bus, but very similar

STREAM=id Associates a stream identifier with this 12C port. The identifier
may then be used in functions like i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

187

PreProcessor

12C1 Instead of SCL= and SDA= this sets the pins to the first module

12C2 Instead of SCL= and SDA= this sets the pins to the second
module

NOINIT

No initialization of the 12C peripheral is performed. Use
I12C_INIT() to initialize peripheral at run time.

Only some chips allow the following:

DATA_HOLD

No ACK is sent until I2C_READ is called for data bytes
(slave only)

ADDRESS_HOLD

No ACK is sent until 12C_read is called for the address byte
(slave only)

SDA HOLD

Min of 300ns holdtime on SDA a from SCL goes low

PIC18 devices that have a separate 12C peripheral instead of a combined
SSP peripheral allow the following:

CLOCK_SOURCE=x

Used to specify the 12C peripheral's clock source. Options
can be FOSC/4, FOSC, HFINTOSC or HFINT, MFINTOSC or
MFINT, REFCLK or REF, TIMERO or TMRO, TIMER2 or
TMR2, TIMER4 or TMR4, TIMERG6 or TMR6, or SMTL1. If not
specified, it defaults to FOSC/4. If a peripheral is selected
as the clock, TMR2 for example, that peripheral must be
setup to achieve the desired 12C clock rate.

CLOCK_DIVISOR=x

Used to specify the 12C clock divisor, can be 4 or 5.

ADDRESS_BITS=x

Used to specify the number of address bits, can be set to 7 or
10. Defaultis 7, if not specified.

ADDRESS1=x
ADDRESS2=x
ADDRESS3=x
ADDRESS4=x

Used to specify the slave mode addresses the peripheral will
respond to. Depending on the address bits and number of
address masks, these devices can have 4, 2 or 1 addresses
that they will respond to. These allow setting the individual
addresses, ADDRESS1=x is the same as ADDRESS=xx.
When set for 7 bit address mode, can have 4 or 2 addresses.
4 if no masks are specified. 2 if 1 or 2 masks are specified.
When set for 10 bit address mode, can have 2 or 1 addresses.
2 if no masks are specified and 1 if 1 mask is specified. If
using 1 or more addresses, always start with ADDRESS1, then
ADDRESS?2, etc., because any unspecified addresses will be
assigned to the value of ADDRESS1.

MASK1=x
MASK2=x

Used to specify the slave mode address masks, depending on
the number of address bits it can have, 0, 1 or 2 address
masks. When set for 7 bit address mode, it can have 0 or 2
address masks; simply assigning a value to MASK1 means 12C
peripheral is set for 2 addresses and 2 address masks. When

188

PreProcessor

set for 10 bit address mode, it can have 0 or 1 address masks;
simply assigning a value to MASK1 means the peripheral is set
for 1 address and 1 address mask. If using 1 or more address
mask, always set MASK1 because if 7 bit address mode is used
and only MASK1 is specified, both address masks will be set to
the value of MASK1. When using 7 bit address mode, MASK1
is the mask for ADDRESS1 and MASK2 is the mask for
ADDRESS2.

SDA_HOLD=x Used to set the hold time on SDA after falling edge of SCL, can
be set to 30, 100 or 300ns. If only SDA_HOLD is specified, the
hold time is set to 300ns and if not specified, the hold time is set
to 100ns.

Description:

CCS offers support for the hardware-based [2C™ and a software-based master 12C™
device.(For more information on the hardware-based 12C module, please consult the
datasheet for your target device; not all PICs support [2C™.

The 12C library contains functions to implement an 12C bus. The #USE 12C remains in
effect for the 12C_START, 12C_STOP, 12C_READ, 12C_WRITE and I2C_POLL functions
until another USE 12C is encountered. If hardware pins are specified for SDA and SCL,
then hardware functions are generated unless the force_sw is specified; otherwise
software functions are generated. The SLAVE mode should only be used with the built-in
SSP. The functions created with this directive are exported when using multiple
compilation units. To access the correct function use the stream identifier.

rco] Some devices have an alternate set of 12C pins that may be used with the
hardware 12C peripherals instead of the default pins. If a device has alternative 12C pins,
then they will have the following configuration fuses available for selecting which pair to
use: ALTI2Cx and NOALTI2Cx. x being the 12C peripheral (1-3). Setting the
NOALTI2Cx configuration fuse causes the device to use the ASCLx and ASDAX pins for
the peripheral. Additionally, these configuration fuses determine which pins #use i2c()
determines the hardware 12C pins for each 12C peripheral. By default, the NOALTI2Cx
configuration fuses are set. In order to use the alternative 12C hardware pins, the
ALTI2Cx configuration fuse must be set for that I12C peripheral.

Example Files:
ex_extee.c with 16¢74.h

Examples:
#use i2c(master, sda-PIN BO, sci=PIN Bl

#use i2c(slave, sda=PIN C4, sci=PIN C3
address=0xa0, FORCE HW

189

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

#use i12c (master, sci=PIN BO, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,
12C Overview

#use profile()

Syntax:
#use profile (options)

Elements:
option - may be any of the following separated by a comma:
ICD - (Default) configures code profiler to use the ICD connection.

TIMERL - (optional) if specified, the code profiler run-time on the microcontroller will
use the Timerl peripheral as a timestamp for all profile events. If not
specified, the code profiler tool will use the PC clock, which may be accurate
for fast events.

BAUD=x - (optional) if specified, will use a different baud rate between the
microcontroller and the code profiler tool. This may be required on slow
microcontrollers to attempt to use a slower baud rate.

Description:
This directs the compiler to add the code profiler run-time in the microcontroller and
configure the link and clock.

Example Files:
ex_profile.c

Examples:
#profile (ICD, TIMER1l, baud=9600)

See Also:
#profile(), profileout(), Code Profile overview

#use pwm()

Syntax:
#use pwm (options)

Elements:
option - may be any of the following separated by a comma:

190

PreProcessor

PWMx or CCPx - Selects the CCP to use, x being the module to use.

irecp] PWMx or OCx - Selects the Output Compare module, x being the module
number to use.

OUTPUT=PIN_xX - Selects the PWM pin to use, pin must be one of the CCP pins. If device
has remappable pins compiler will assign specified pin to specified CCP module. If
CCP module not specified it will assign remappable pin to first available module.

ireco] OUTPUT=PIN_xx - Selects the PWM pin to use, pin must be one of the OC pins. If
device has remappable pins compiler will assign specified pin to specified OC
module. If OC module not specified it will assign remappable pin to first available
module.

TIMER=x - Selects timer to use the PWM module, default if not specified is Timer2.

FREQUENCY=x - Sets the period of PWM based off specified value, should not be
used if PERIOD is already specified. If frequency can't be achieved exactly
compiler will generate a message specifying the exact frequency and period
of PWM. If neither FREQUENCY or PERIOD is specified, the period defaults
to maximum possible period with maximum resolution and compiler will
generate a message specifying the frequency and period of PWM, or if using
same timer as previous stream instead of setting to maximum possible it will
be set to the same as previous stream. If using same timer as previous
stream and frequency is different compiler will generate an error.

Period=x - Sets the period of PWM, should not be used if FREQUENCY is already
specified. If period can't be achieved exactly compiler will generate a
message specifying the exact period and frequency of PWM. If neither
PERIOD or FREQUENCY is specified, the period defaults to maximum
possible period with maximum resolution and compiler will generate a
message specifying the frequency and period of PWM, or if using same timer
as previous stream instead of setting to maximum possible it will be set to the
same as previous stream. If using same timer as previous stream and period
is different compiler will generate an error.

BITS=x - Sets the resolution of the the duty cycle, if period or frequency is specified
will adjust the period to meet set resolution and will generate an message
specifying the frequency and duty of PWM. If period or frequency not
specified will set period to maximum possible for specified resolution and
compiler will generate a message specifying the frequency and period of
PWM, unless using same timer as previous then it will generate an error if
resolution is different then previous stream. If not specified, then frequency,
period or previous stream using same timer sets the resolution.

DUTY=x - Selects the duty percentage of PWM. Default, if not specified, is 50%.

PWM_ON - Initialize the PWM in the ON state. Default state, if not specified, is
pwm_on or pwm_off.

191

PreProcessor

PWM_OFF - Initialize the PWM in the OFF state.

STEAM-=id - Associates a stream identifier with the PWM signal. The identifier may
be used in functions like pwm_set_duty percent().

Description:

This directive tells the compiler to setup a PWM on the specified pin using the specified
frequency, period, duty cycle and resolution. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in functions such as
pwm_set_duty_percent(), pwm_set_frequency(), pwm_set_duty(), pwm_on() and
pwm_off().

See Also:
pwm_on(), pwm_off(), pwm_set frequency(), pwm_set duty percent(), pwm_set duty()

#use rs232
Syntax:
#use rs232 (options)

Elements:
option - may be any of the following separated by a comma:
STREAM=id - Associates a stream identifier with this RS232 port. The identifier may
then be used in functions like fputc.

BAUD=x - Set baud rate to x.
XMIT=pin - Set transmit pin.
RCV=pin - Set receive pin.

FORCE_SW - Generate software serial I/O routines even when UART pins are
specified.

BRGH10K - Allow bad baud rates on devices that have baud rate problems.

ENABLE=pin - The specified pin will be high during transmit. This may be used to
enable 485 transmit.

DEBUGGER - Indicates this stream is used to send/receive data through a CCS ICD
unit. The default pin used is B3, use XMIT= and RCV= to change the pain
used. Both should be the same pin.

RESTART_WDT - Causes GETC() to clear the WDT as it waits for a character.

INVERT - Invert the polarity of the serial pins (normally not needed when level
converter, such as MAX232). May not be used with internal UART.

PARITY=x - Where x is N, E, or O.
192

PreProcessor

BITS=x - Where x is 5-9 (5-7 may not be used with the SCI).

FLOAT_HIGH - The line is not driven high. This is used for open collector outputs.
Bit 6 in RS232_ERRORS is set if the pin is not high at the end of the bit
time.

ERRORS - Used for the compiler to keep receive errors in the variable
RS232_ERRORS and to reset errors when they occur,
RS232_BUFFER_ERRORS when transmit, and RECEIVE_BUFFER are
used.

SAMPLE_EARLY - A getc() normally samples data in the middle of a bit time. This
option causes the sample to be at the start of a bit time. May not be used
with UART.

RETURN-=pin - The pin used to read signal back for FLOAT_HIGH and
MULTI_MASTER. The default for FLOAT_HIGH is the XMIT pin, and for
MULTI_MASTER the RCV pin.

MULTI_MASTER - Uses the RETURN pin to determine if another master on the bus
is transmitting at the same time. If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are ignored until bit 6 is cleared.
The signal is checked at the start and end of a bit time. May not be used
with the UART.

LONG_DATA - Makes getc() return an int1l6 and putc() accept an intl6. This is for 9
bit data formats.

DISABLE_INTS - Will cause interrupts to be disabled when the routines get or put a
character. This prevents character distortion for software implemented 1/0O
and prevents interaction between 1/O in interrupt handlers and the main
program when using the UART.

STOP=x - Used to set the number of stop bits (default is 1). This works for both
UART and non-UART ports.

TIMEOUT=x - To set the time getc() waits for a byte in milliseconds. If no character
comes in within this time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART and non-UART ports.

SYNC_SLAVE - Makes the RS232 line a synchronous slave, making the receive pin
a clock in, and the data pin the data in/out.

SYNC_MASTER - Makes the RS232 line a synchronous master, making the receive
pin a clock out, and the data pin the data in/out.

SYNC_MASTER_CONT - Makes the RS232 line a synchronous master mode in
continuous receive mode. The receive pin is set as a clock out, and the data
pin is set as the data in/out.

UART1 - Sets the XMIT= and RCV= to the device's first hardware UART.
193

PreProcessor

UART?2 - Sets the XMIT=and RCV= to the chips second hardware UART.
UARTS - Sets the XMIT= and RCV= to the chips third hardware UART.
UART4 - Sets the XMIT= and RCV= to the chips fourth hardware UART.
ireo] UART1A - Uses alternate UART pins.

ireo] UART2A - Uses alternate UART pins.

NOINIT - No initialization of the UART peripheral is performed. Useful for dynamic
control of the UART baud rate or initializing the peripheral manually at a later
point in the program's run time. If this option is used, then setup_uart()
needs to be used to initialize the peripheral. Using a serial routine (such as
getc() or putc()) before the UART is initialized will cause undefined
behavior.

ICD - Indicates this stream uses the ICD in a special pass through mode to
send/receive serial data to/from the PC. The ICSP clock line is the device's
receive pin (usually B6), and the ICSP data line is the transmit pin (usually
B7). The default transmit pin is the device's ICSPDAT/PGD pin and the
default receive pin is the device's ICSPCLK/PGC pin. Use XMIT= and
RCV= to change the pins used.

MAX_ERROR=x - Specifies the max error percentage the compiler can set the
RS232 baud rate from the specified baud before generating an error.
Defaults to 3% if not specified.

serial buffer options:

RECEIVE_BUFFER=x - Size in bytes of UART circular receive buffer, default if not
specified is zero. Uses an interrupt to receive data, supports RDA interrupt
or external interrupts.

TRANSMIT_BUFFER=x - Size in bytes of UART circular transmit buffer, default if not
specified is zero.

TXISR - If TRANSMIT_BUFFER is greater then zero specifies using TBE interrupt for
transmitting data. Default is NOTXISR if TXISR or NOTXISR is not specified.
TXISR option can only be used when using hardware UART.

NOTXISR - If TRANSMIT_BUFFER is greater then zero specifies to not use TBE
interrupt for transmitting data. Default is NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is greater then zero.

flow control options:

RTS=PIN_xx - Pin to use for RTS flow control. When using
FLOW_CONTROL_MODE this pin is driven to the active level when it is
ready to receive more data. In SIMPLEX_MODE the pin is driven to the

194

PreProcessor

active level when it has data to transmit. FLOW_CONTROL_MODE can only
be use when using RECEIVE_BUFFER.

RTS_LEVEL=x - Specifies the active level of the RTS pin, HIGH is active high and
LOW is active low. Defaults to LOW if not specified.

CTS=PIN_xx - Pin to use for CTS flow control. In both FLOW_CONTROL_MODE
and SIMPLEX_MODE this pin is sampled to see if it clear to send data. If pin
is at active level and there is data to send it will send next data byte.

CTS_LEVEL=x - Specifies the active level of the CTS pin, HIGH is active high and
LOW is active low. Default to LOW if not specified.

FLOW_CONTROL_MODE - Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to the active level when
ready to receive data. Defaults to FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or SIMPLEX_MODE is specified. If RTS pin is
not specified then this option is not used.

SIMPLEX_MODE - Specifies how the RTS pin is used. For SIMPLEX_MODE the
RTS pin is driven to the active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin is not specified then this option is
not used.

Description:

This directive tells the compiler the baud rate and pins used for serial I1/0O. This directive
takes effect until another RS232 directive is encountered. The #USE DELAY directive
must appear before this directive can be used. This directive enables use of built-in
functions such as GETC, PUTC, and PRINTF. The functions created with this directive
are exported when using multiple compilation units. To access the correct function use
the stream identifier.

When using parts with built-in SCI (frep) UART) and the SCI (pep; UART) pins are
specified, the SCI will be used. If a baud rate cannot be achieved within 3% of the
desired value using the current clock rate, an error will be generated. The definition of the
RS232_ERRORS is as follows:

No UART:

e Bit 7 is 9th bit for 9 bit data mode (get and put).

e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0is used to indicate a parity error.

195

PreProcessor

Definition of the RS232 BUFFER ERRORS variable is as follows:
e Bit 0 UART Receive overrun error occurred.

e Bit 1 Receive Buffer overflowed.

e Bit 2 Transmit Buffer overflowed.

Warning: The device UART will shut down on overflow (3 characters received by the
hardware with a GETC() call). The "ERRORS" option prevents the shutdown by detecting
the condition and resetting the UART.

Example Files:
ex_cust.c

Examples:
#use rs232(baud=9600,xmit=PIN A2, rcv=PIN A3)

See Also:

getc(), putc(), printf(), setup _uart(), RS2332 1/0 overview, kbhit(), puts(), putc_send(),
rcv_buffer bytes(), tx_buffer_bytes(), rcv_buffer_full(), tx_buffer_full(),
tx_buffer_available()

use rtos
(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run
regularly scheduled tasks without the need for interrupts. This is accomplished by a
function (RTOS_RUN()) that acts as a dispatcher. When a task is scheduled to run, the
dispatch function gives control of the processor to that task. When the task is done
executing or does not need the processor anymore, control of the processor is returned
to the dispatch function which then will give control of the processor to the next task that
is scheduled to execute at the appropriate time. This process is called cooperative multi-
tasking.

Syntax:
#use rtos (options)

Elements:
option - may be any of the following separated by a comma:
timer=X - Where x is 0-4 specifying the timer used by the RTOS.

minor_cycle=time - Where time is a number followed by s, ms, us, ns. This is the
longest time any task will run. Each task's execution rate must be a multiple
of this time. The compiler can calculate this if it is not specified.

statistics - Maintain min, max, and total time used by each task.

196

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:

This directive tells the compiler which timer on the PIC to use for monitoring and when to
grant control to a task. Changes to the specified timer's prescaler will effect the rate at
which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to
execute with the minor_cycle option. This simply forces all task execution rates to be a
multiple of the minor_cycle before the project will compile successfully. If the this option is
not specified the compiler will use a minor_cycle value that is the smallest possible factor
of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum
processor time taken by one execution of each task, the maximum processor time taken
by one execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Examples:
#use rtos(timer=0,minor cycle=20ms)

See Also:
#TASK

#use spi

Syntax:
#use spi (options)

Elements:
option - may be any of the following separated by a comma:
MASTER - Set the device as the master. (default).

SLAVE - Set the device as the slave.
BAUD-=n - Target bits per second, default is as fast as possible.

CLOCK_HIGH=n - High time of clock in us (not needed if BAUD= is used).
(default=0).

CLOCK_LOW-=n - Low time of clock in us (not needed if BAUD= is used).
(default=0).

DI=pin - Optional pin for incoming data.
DO=pin - Optional pin for outgoing data.
CLK=pin - Clock pin.

197

PreProcessor

MODE=n - The mode to put the SPI bus.

ENABLE=pin - Optional pin to be active during data transfer.

LOAD=pin - Optional pin to be pulsed active after data is transferred.
DIAGNOSTIC=pin - Optional pin to the set high when data is sampled.
SAMPLE_RISE - Sample on rising edge.

SAMPLE_FALL - Sample on falling edge (default).

BITS=n - Max number of bits in a transfer. (default=32)

SAMPLE_COUNT=n - Number of samples to take (uses majority vote). (default=1
LOAD_ACTIVE=n - Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n - Active state for ENABLE pin (0, 1). (default=0)

IDLE=n - Inactive state for CLK pin (0, 1). (default=0)

ENABLE_DELAY=n - Time in us to delay after ENABLE is activated. (default=0)
DATA_HOLD-=n - Time between data change and clock change.

LSB_FIRST - LSB is sent first.

MSB_FIRST - MSB is sent first. (default)

STREAM=id - Specify a stream name for this protocol.

SPI1 - Use the hardware pins for SPI Port 1.

SPI2 - Use the hardware pins for SPI Port 2.

ireo] SPI3 - Use the hardware pins for SPI Port 3

ireo] SPI4 - Use the hardware pins for SPI Port 4

FORCE_SW - Use a software implementation even when hardware pins are
specified.

FORCE_HW - Use the pic hardware SPI.
NOINIT - Do not initialize the hardware SPI Port.
irep) XFER16 - Use 16-bit transfers instead of two 8-bit transfers.

Description:

The SPI library contains functions to implement an SPI bus. After setting all of the proper
parameters in #USE SPI, the spi_xfer() function can be used to both transfer and receive
data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins don’'t need to

198

PreProcessor

be assigned values through the options; the compiler will automatically assign hardware-
specific values to these pins. Consult your PIC’s data sheet as to where the pins for
hardware SPI are. If hardware SPI is not used, then software SPI will be used. Software
SPI is much slower than hardware SPI, but software SPI can use any pins to transfer and
receive data other than just the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and
SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1 and
SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to send
data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as
indicated above.

See Also:

spi_xfer()

#use standard i0

Syntax:
#use standard_io (port)

Elements:
port-isA,B,C,D,E, F,G, H,JorALL

Description:

This directive affects how the compiler will generate code for input and output instructions
that follow. This directive takes effect until another #USE XXX 10 directive is
encountered. The standard method of doing 1/0 will cause the compiler to generate code
to make an 1/O pin either input or output every time it is used. On the 5X processors this
requires one byte of RAM for every port set to standard 1/O.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

Example Files:
ex_cust.c

199

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor
Examples:
#use standard io(A)

See Also:
#USE FAST 10, #USE FIXED 10, General Purpose I/0O

#use timer

Syntax:
#use timer (options)

Elements:
TIMER=x - Sets the timer to use as the tick timer. x is a valid timer that the PIC has.
Default value is 1 for Timer 1.

TICK=xx - Sets the desired time for 1 tick. xx can be used with ns(hanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't
be achieved it will set the time to closest achievable time and will generate a
warning specifying the exact tick time. The default value is 1us.

BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits or 32 for
32bits. The default is 32 for 32 bits.

rco] BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for
32bits or 64 for 64 bits. The default is 32 for 32 bits.

ISR - Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.

NOISR - The get_ticks() function increments the upper bits of the tick timer. This
requires that the get_ticks() function be called more often then the timer's
overflow rate. NOISR is the default mode of operation.

STREAM=id - Associates a stream identifier with the tick timer. The identifier may be
used in functions like get_ticks().

DEFINE=id - Creates a define named id which specifies the number of ticks that will
occur in one second. Default define name if not specified is
TICKS_PER_SECOND. Define name must start with an ASCII letter ‘A’ to 'Z', an
ASCI| letter 'a’ to 'z or an ASCII underscore ().

COUNTER or COUNTER=x - Sets up specified timer as a counter instead of timer. x
specifies the prescallar to setup counter with, default is1 if x is not specified
specified. The function get_ticks() will return the current count and the function
set_ticks() can be used to set count to a specific starting value or to clear
counter.

200

PreProcessor

Description:

This directive creates a tick timer using one of the PIC's timers. The tick timer is
initialized to zero at program start. This directive also creates the define
TICKS_PER_SECOND as a floating point number, which specifies that number of ticks
that will occur in one second.

Examples:
#USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intl6é current, unsigned intl6
previous) {

return (current - previous);

}

void main (void) {
unsigned intl6é current tick, previous tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

}

See Also:
get ticks(), set ticks()

#use touchpad

Syntax:
#use touchpad (options)

Elements:

RANGE=x - Sets the oscillator charge/discharge current range. If x is L, current is
nominally 0.1 microamps. If x is M, current is nominally 1.2 microamps. If x is H, current
is nominally 18 microamps. Default value is H (18 microamps).

THRESHOLD=x - x is a number between 1-100 and represents the percent reduction in

the nominal frequency that will generate a valid key press in software. Default value is
6%.

201

PreProcessor

SCANTIME=xxXMS - xx is the number of milliseconds used by the microprocessor to scan
for one key press. If utilizing multiple touch pads, each pad will use xx milliseconds to
scan for one key press. Default is 32ms.

PIN=char - If a valid key press is determined on “PIN”, the software will return the
character “char” in the function touchpad_getc(). (Example: PIN_B0="A’)

SOURCETIME=xxus - (CTMU only) xx is the number of microseconds each pin is
sampled for by ADC during each scan time period. Default is 10us.

Description:

This directive will tell the compiler to initialize and activate the Capacitive Sensing Module
(CSM)or Charge Time Measurement Unit (CTMU) on the microcontroller. The compiler
requires use of the TIMERO and TIMER1 modules for CSM and Timerl ADC modules for
CTMU, and global interrupts must still be activated in the main program in order for the
CSM or CTMU to begin normal operation. For most applications, a higher RANGE, lower
THRESHOLD, and higher SCANTIME will result better key press detection. Multiple
PIN's may be declared in “options”, but they must be valid pins used by the CSM or
CTMU. The user may also generate a TIMERO ISR with TIMERO's interrupt occuring
every SCANTIME milliseconds. In this case, the CSM's or CTMU's ISR will be executed
first.

Examples:
#USE TOUCHPAD (THRESHOLD=5, PIN D5='5", PIN_BO='C')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, c¢ will have '5'
See Also:

touchpad_state(), touchpad getc(), touchpad hit()

#warning
Syntax:
#warning text

Elements:
text - is optional and may be any text.

202

PreProcessor

Description:

Forces the compiler to generate a warning at the location this directive appears in the
file. The text may include macros that will be expanded for the display. This may be used
to see the macro expansion. The command may also be used to alert the user to an
invalid compile time situation.

To prevent the warning from being counted as a warning, use this syntax:
#warning/information text

Example Files:
ex_psp.c

Examples:
#if BUFFER SIZE<32
#warning Buffer Overflow may occur
#endif

See Also:
#ERROR

#word

Syntax:
#word id=x

Elements:
id - is a valid C identifier.

X - is a C variable or a constant

Description:

If the id is already known as a C variable then this will locate the variable at address x. In
this case the variable type does not change from the original definition. If the id is not
known a new C variable is created and placed at address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share the
same memory location.

Examples:
#word data = 0x0800

struct {
int lowerByte : 8;
int upperByte : 8;

203

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

} control word;
#word control word = 0x85

control word.upperByte = 0x42;

[PCD]
#word data = 0x0860
struct {

short C;

short Z;

short 0OV;

short N;

short RA;

short IPLO;

short IPLL1;

short IPL2;

int upperByte : 8;
} status register;

#word status register = 0x42
short zero = status register.Z;
See Also:

#bit, #byte, #locate, #reserve, Named Regqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#zero local ram

Syntax:
#zero_local_ram

Elements:
None

Description:

This directive causes the compiler to initialize all local variables with no initializer to zero
every time the function is invoked. Local variables with an initializer (= after the
declaration) are not affected.

Example Files:
None

Examples:
#zero local ram
void sample adc(void ({
int raw_datall-]; // both raw data and

204

PreProcessor

int sum; // sum zero'ed on each call

}

See Also:
#zero_ram, #fill rom, static

#zero ram

Syntax:
#zero_ram

Elements:
None

Description:
This directive zero's out all of the internal registers that may be used to hold variables
before program execution begins.

Example Files:
ex_cust.c

Examples:
#zero ram
void main () {

}

205

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC
microcontroller's peripherals. This makes it very easy for the users to configure and use
the peripherals without going into in depth details of the registers associated with the
functionality. The functions categorized by the peripherals associated with them are listed
on the next page. Click on the function name to get a complete description and
parameter and return value descriptions.

abs()

Syntax:
value = abs(x)

Parameters:
X is a signed 8, 16, or 32 bit int or a float
[pco] X is any integer or float type.

Returns:
Same type as the parameter.

Function:
Computes the absolute value of a number.

Availability:
All devices

Requires:
#INCLUDE <stdlib.h>

Examples:
signed int target,actual;

error = abs(target-actual);

See Also:

labs()

206

Built-in Functions

sin() cos() tan() asin() acos()atan() sinh() cosh() tanh()

atan2()

Syntax:

val = sin (rad)

val = cos (rad)

val = tan (rad)

rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters:

rad is a float representing an angle in Radians -2pi to 2pi.

irep] rad is any float type representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.

ieco] is any float type with the range -1.0 to 1.0.

Value is a float

erep] Value is any float type

Returns:
rad - is a float representing an angle in Radians -pi/2 to pi/2

val - is a float with the range -1.0 to 1.0.

radl - is a float representing an angle in Radians 0 to pi

rad2 - is a float representing an angle in Radians -pi to pi

Result is a float

ipep] rad is a float with a precision equal to val representing an angle in Radians -pi/2 to
pi/2

rpep] val is a float with a precision equal to rad within the range -1.0 to 1.0.

lecp] radl is a float with a precision equal to val representing an angle in Radians 0 to pi

lpcp] rad? is a float with a precision equal to val representing an angle in Radians -pi to pi

irep] Result is a float with a precision equal to value

207

Built-in Functions

Function:

These functions perform basic Trigonometric functions.
sin - returns the sine value of the parameter (measured in radians)
cos - returns the cosine value of the parameter (measured in radians)
tan - returns the tangent value of the parameter (measured in radians)
asin - returns the arc sine value in the range [-pi/2,+pi/2] radians
acos - returns the arc cosine value in the range [0,pi] radians
atan - returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 - returns the arc tangent value of y/x in the range [-pi,+pi] radians
sinh - returns the hyperbolic sine of x
cosh - returns the hyperbolic cosine of x
tanh - returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable.
The user can check the errno to see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability:
All devices

Requires:
#INCLUDE <math.h>

Examples:
float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);;

Examples Files:
ex_tank.c

See Also:
lod(), 10910(), exp(), pow(), sart()

208

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

act status()

Syntax:
status = act_status();

Parameters:

Returns:
Returns the status of the ACT module. See the device's header file for defines that can
be and'ed with result.

Function:
Used to get the status of the Active Clock Tuning (ACT) module.

Availability:
Devices with an ACT module. See the device's header file for availability.

Requires:

Examples:

unsigned int8 Status;

intl ClockLocked;

Status = act status();

if ((Status & ACT CLOCK LOCKED) == 0)
ClockLoced = FALSE;

else
ClockLocked = TRUE;

See Also:

setup_act()

adc done()adc2 done() adc done2()

Syntax:

value = adc_done();

pep] Value = adc_done2();

irep] Value=adc_done([channel])

Parameters:
adc_done(); - Nothing required

209

Built-in Functions

irep; adc_done?2(); - channel is an optional parameter for specifying the channel to
check if the conversion is done. If not specified will use channel specified in the last call
to set_adc_channel(), read_adc() or adc_done().

Returns:
A short int. TRUE if the A/D converter is done with conversion, FALSE if it is still busy.

Function:
Can be polled to determine if the A/D has valid data.

Availability:
Only available on devices with built in analog to digital converters
reco) Only available for dsPIC33EPxxGSxxx family.

Requires:

Examples:
intle value;
setup adc ports (sANO|sAN1l, VSS VDD);
setup adc (ADC CLOCK DIV 4|ADC TAD MUL 8);
set _adc_channel (0);
read_adc (ADC_START ONLY) ;

intl done = adc done();
while (!done) {
done = adc_done() ;

}
value = read adc (ADC_READ ONLY) ;
printf (YA/C value = %LX\n\r”, value);

}

See Also:
setup _adc(), set adc _channel(), setup adc_ports(), read adc(), ADC Overview

adc read()

Syntax:
result=adc_read(register)

Parameters:

Register - ADC register to read:
e adc_result
e adc_accumulator
e adc filter

210

Built-in Functions

Returns:

int8 or in16 read from the specified register. Return size depends on which register is
being read. For example, ADC_RESULT register is 16 bits and ADC_COUNT register is
8-bits.

Function:

Reads one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.
Availability:

All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
FilteredResult=adc_ read (ADC_FILTER);

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set _adc_channel(), read _adc(),
#DEVICE, adc_write(), adc_status(), set_adc _trigger()

adc status()

Syntax:
status=adc_status()

Parameters:
Nothing required

Returns:
int8 value of the ADSTAT register

Function:
Read the current value of the ADSTAT register of the Analog-to-Digital Converter with
Computation (ADC2) Module.

Availability:
All devices with an ADC2 Module

Requires:

211

Built-in Functions

Examples:
while ((adc_status() & ADC UPDATING)==0) ;

Average=adc_ read (ADC FILTER) ;

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set _adc channel(), read _adc(),
#DEVICE, adc_read(), adc_write(), set _adc_trigger()

adc write()

Syntax:
adc_write(register, value)

Parameters:
register - ADC register to write:
e ADC_REPEAT
e ADC_SET_POINT
e ADC_LOWER_THRESHOLD
e ADC_UPPER_THRESHOLD

Returns:
Undefined

Function:
Write one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.

Availability:
All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
adc _write (ADC SET POINT, 300);

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set adc_channel(), read adc(),
#DEVICE, adc_read(), adc_status(), set_adc_trigger()

assert()

Syntax:
assert (condition);

212

Built-in Functions

Parameters:
condition is any relational expression

Returns:

Function:

This function tests the condition and if FALSE will generate an error message on
STDERR (by default the first USE RS232 in the program). The error message will include
the file and line of the assert(). No code is generated for the assert() if you #define
NODEBUG. In this way you may include asserts in your code for testing and quickly
eliminate them from the final program.

Availability:
All Devices

Requires:
assert.h and #USE RS232

Examples:
assert (number of entries<TABLE SIZE);

// If number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

See Also:
#USE RS232, RS232 I/0 Overview

atoe()

Syntax:
atoe(string);

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number

213

Built-in Functions

Function:

Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined. This function also handles E format
numbers.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float32 x;

strcpy (string, "12E3");
x = atoe(string);
// x is now 12000.00

See Also:
atoi(), atol(), atoi32(), atof(), printf()

atof() atof48() atof64() strtof48()

Syntax:

result = atof (string)
[PCD] Or

result = atof48(string)
or
result=atof64(string)
or
result-strtof48(string))

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number
irep] Result is a floating point number in single, extended or double precision format

Function:

Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined.

214

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float x;

strcpy (string, "123.456");
x = atof (string);
// x 1s now 123.456

Example Files:
ex_tank.c

See Also:
atoi(), atol(), atoi32(), printf()

atoi() atol() atoi32() atol32() atoi48() atoi64()

Syntax:

ivalue = atoi(string)

ivalue = atol(string)

i32value = atoi32(string)
i32value = atol32(string)

(pco] i48value = atoi48(string);
(pco] i64value = atoi64(string);

Parameters:
string - is a pointer to a null terminated string of characters.

Returns:

ivalue is an 8 bit int

ivalue is a 16 bit int
i32value is a 32 bit int

rep) i48value is a 48 bit int
pcp] i64value is a 64 bit int

Function:

Built-in Functions

Converts the string passed to the function into an int representation. Accepts both
decimal and hexadecimal argument. If the result cannot be represented, the behavior is

undefined.
215

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Availability:
All devices

Requires:
#INCLUDE<stdlib.h>

Examples:
char string([10];
int x;

strcpy(string,"123");
x = atoi (string); // x 1s now 123

Example Files:
input.c

See Also:

printf()

at clear interrupts()

Syntax:
at_clear_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants
are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

Function:

To disable the Angular Timer interrupt flags. More than one interrupt can be cleared at a
time by or'ing multiple constants together in a single call, or calling function multiple times
for each interrupt to clear.

216

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
#INT-AT1
voidl isr(void) {

if (at_interrupt active (AT PERIOD INTERRUPT))
{

handle period interrupt();
at _clear interrupts (AT PERIOD INTERRUPT) ;

}
if (at_interrupt (active (AT PHASE INTERRUPT);

{
handle phase interrupt();

at clear interrupts (AT PHASE INTERRUPT);
}

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at _get period(), at get phase counter(),

at set set point(), at get set point(), at get set point error(),

at_enable interrupts(), at disable interrupts(), at interrupt active(), at setup cc(),
at_set compare time(), at get capture(), at get status(), setup at()

at disable interrupts()

Syntax:
at_disable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants
are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

217

Built-in Functions

Returns:

Function:

To disable the Angular Timer interrupts. More than one interrupt can be disabled at a
time by or'ing multiple constants together in a single call, or calling function multiple times
for eadch interrupt to be disabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at disable interrupts (AT PHASE INTERRUPT);
at _disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at set set point(), at get set point(), at get set point error(),
at_enable interrupts(), at clear interrupts(), at interrupt active(), at setup cc(),
at_set compare time(), at get capture(), at get status(), setup at()

at enable interrupts()

Syntax:
at_enable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to enable. The constants
are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

218

Built-in Functions

Function:

To enable the Angular Timer interrupts. More than one interrupt can be enabled at a time
by or'ing multiple constants together in a single call, or calling function multiple times for
each interrupt to be enabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at _enable interrupts (AT _PHASE INTERRUPT) ;
at _enable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);

See Also:

setup at (), at set resolution(), at get resolution(),

at set missing pulse delay (), at get missing pulse delay (),

at get phase counter(), at set set point(), at get set point(),
at get set point(), at get set point error(),

at disable interrupts(), at clear interrupts(),

at interrupt active(), at setup cc(), at _set compare time(),

at get capture(), at get status()

at get capture()

Syntax:
result=at_get_capture(which);;

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to get the
capture time from, can be 1, 2 or 3.

Returns:
A 16-bit integer

Function:
To get one of the Angular Timer Capture/Compare modules capture time.

Availability:
All Devices with an AT module

Requires:

219

Built-in Functions

Examples:
resultl=at get capture(l);
result2=at get capture(2);

See Also:

setup _at (), at set resolution(), at _get resolution(),

at set missing pulse delay (), at get missing pulse delay(),

at get phase counter(), at set set point(), at get set point(),
at get set point(), at get set point error(),

at enable interrupts(), at disable interrupts(),

at clear interrupts(), at interrupt active(), at _setup cc(),

at set compare time(), at get status()

at get missing pulse delay()

Syntax:
result=at_get_missing_pulse_delay();

Parameters:

Returns:
A 16-bit integer

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get missing pulse delay();

See Also:

at_set _resolution(), at_get resolution(), at_set missing pulse delay(), at_get period(),
at_get phase counter(), at_set set point(), at get set point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

220

Built-in Functions

at get period()

Syntax:
result=at_get_period();

Parameters:

Returns:

A 16-bit integer. The MSB of the returned value specifies whether the period counter
rolled over one or more times. 1 - counter rolled over at least once, 0 - value returned is
valid.

Function:
To get one of the Angular Timer Measure Period.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get period();

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at get phase counter(), at set set point(),

at get set point(), at get set point error(), at enable interrupts(),
at_disable interrupts(), at clear_interrupts(), at_interrupt active(), at setup cc(),
at_set compare _time(), at get capture(), at get status(), setup at()

at get phase counter()

Syntax:
result=at_get_phase_counter();

Parameters:

Returns:
A 16-bit integer.

221

Built-in Functions

Function:
To get one of the Angular Timer Phase Counter.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get phase counter();

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at get period(), at set set point(),

at_get set point(), at get set point error(), at enable_interrupts(),
at_disable interrupts(), at clear_interrupts(), at_interrupt active(), at setup cc(),
at_set compare _time(), at get capture(), at get status(), setup at()

at get resolution()

Syntax:
result=at_get_resolution();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Resolution.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get resolution();

222

Built-in Functions

See Also:

at_set _resolution(), at_set_missing pulse delay(), at_get _missing pulse delay(),
at_get period(), at_get phase counter(), at_set_set point(), at_get_set point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),

at_clear interrupts(), at_interrupt_active(), at_setup cc(), at_set compare time(),
at_get capture(), at_get status(), setup_at()

at get set point()

Syntax:
result=at_get_set_point();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Set Point.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get set point();

See Also:

at_set resolution(), at_get resolution(), at_set_missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_set _set point(), at_get_set _point_error(), at_enable_interrupts(), at_disable interrupts(),
at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare_time(),
at_get _capture(), at_get status(), setup_at()

at get set point error()

Syntax:
result=at_get_set_point_error();

Parameters:

223

Built-in Functions

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Set Point Error, the error of the measured period value
compared to the threshold setting.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at get set point error();

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at set set point(), at_get set point(), at_enable interrupts(), at_disable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup cc(), at_set_compare_time(),
at_get capture(), at_get status(), setup_at()

at get status()

Syntax:
result=at_get_status();

Parameters:

Returns:

An 8-bit integer. The possible results are defined in the device's header file as:
AT_STATUS_PERIOD_AND_PHASE_VALID
AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function:
To get one of the Angular Timer module.

Availability:
All Devices with an AT module

224

Built-in Functions

Requires:

Examples:
if ((at_get status()&AT STATUS PERIOD AND PHASE VALID)==
AT STATUS PERIOD AND PHASE VALID
{
Period=at get period();
Phase=at get phase();
}

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set point_error(), at_enable interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_set compare time(), at_get capture(), setup_at()

at interrupt active()

Syntax:
result=at_interrupt_active(interrupt);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to check if its flag is set.
The constants are defined in the device's header file as:

AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT_PERIOD_INTERRUPT

AT_CC3_INTERRUPT

AT_CC2_INTERRUPT

AT_CC1_INTERRUPT

Returns:
TRUE if the specified AT interrupt's flag is set, interrupt is active, or FALSE if the flag is
clear, interrupt is not active.

Function:
To check if the specified Angular Timer interrupt flag is set.

Availability:
All Devices with an AT module

225

Built-in Functions

Requires:

Examples:
#INT-AT1
voidl isr(void)
{
if (at_interrupt active (AT PERIOD INTERRUPT))
{
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;
}
if (at_interrupt (active (AT PHASE INTERRUPT);
{
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT);

}

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at_get phase counter(),

at_set _set point(), at_get _set point(), at_get_set point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_setup cc(), at set compare _time(),
at_get capture(), at_get status(), setup at()

at set compare time()

Syntax:
at_set_compare_time(which, compare_time);

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to set the
compare time for, can be 1, 2, or 3.

compare_time - a 16-bit constant or variable specifying the value to trigger an
interrupt/ouput pulse.

Returns:

Function:
To set one of the Angular Timer Capture/Compare module's compare time.

226

Built-in Functions

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at set compare time (1,0x1FF);
at set compare time (3, compare time) ;}

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_get capture(), at_get status(), setup_at()

at set missing pulse delay()

Syntax:
at_set_missing_pulse_delay(pulse_delay);

Parameters:
pulse_delay - a signed 16-bit constant or variable to set the missing pulse delay.

Returns:

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
at set missing pulse delay(pulse delay);

227

Built-in Functions

See Also:

at_set_resolution(), at_get_resolution(), at_get_missing_pulse delay(), at_get period(),
at_get phase counter(), at_set_set point(), at_get set point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable interrupts(), at_clear interrupts(), at_interrupt_active(),
at _setup cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

at set resolution()

Syntax:
at_set_resolution(resolution);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

Returns:

Function:
To setup the Angular Timer Resolution

Availability:
All Devices with an AT module

Requires:

Examples:
at set resolution(resolution);

See Also:

at_get resolution(), at_set _missing_pulse delay(), at_get missing pulse delay(),
at_get period(), at_get phase counter(), at_set set point(), at get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare_time(),
at_get capture(), at_get status(), setup at()

at set set point()

Syntax:
at_set set point(set_point);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

228

Built-in Functions

Returns:

Function:
To setup the Angular Timer Set Point

Availability:
All Devices with an AT module

Requires:

Examples:
at _set set point(set point);

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_get set point(), at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup cc(), at_set_compare_time(),
at_get capture(), at_get status(), setup at()

at setup cc()

Syntax:
at_setup_cc(which, settings);

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare to setup, can be 1, 2 or
3.

settings - a 16-bit constant specifying how to setup the specified AT Capture/Compare
module. See the device's header file for all options. Some of the typical options include:
- AT_CC_ENABLED

AT_CC_DISABLED

AT_CC_CAPTURE_MODE

AT_CC_COMPARE_MODE

AT_CAPTURE_FALLING_EDGE

AT_CAPTURE_RISING_EDGE

Returns:

229

Built-in Functions

Function:
To setup one of the Angular Timer Capture/Compare modules to the specified settings.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at _setup cc(1,AT CC_ENABLED|AT CC_CAPTURE MODE |
AT CAPTURE FALLING EDGE|AT CAPTURE INPUT ATCAP);

at_setup cc(2,AT CC_ENABLED|AT CC_CAPTURE MODE |
AT CC_ACTIVE HIGH);

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_set_set point(), at_get _set point(), at_get_set point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),

at_set compare time(), at_get capture(), at_get status(), setup_at()

bit clear()

Syntax:
bit_clear(var, bit)

Parameters:
var may be a any bit variable (any Ivalue)
bit is a number 0- 31 63 representing a bit number, 0 is the least significant bit.

Returns:
Undefined

Function:
Simply clears the specified bit (0-7, 0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is the similar to: var &= ~(1<<bit);

Availability:
All Devices

Requires:

230

Built-in Functions

Examples:
int x;
x=5;
bit clear(x,2); // x is now 1

Example Files:
ex_patg.c

See Also:
bit_set(), bit_test()

bit first()

Syntax:
N = bit_first (value, var)

Parameters:
value is a 0 to 1 to be shifted in
var is a 16 bit integer

Returns:
An 8-bit integer

Function:
This function sets N to the 0 based position of the first occurrence of value. The search
starts from the right or least significant bit.

Availability:
24-bit Devices (PIC24, 30F/33F)

Requires:

Examples:
intle var = 0x0033;
Int8 N = 0;
// N = 2
N = bit first (0, var);

See Also:
shift_right(), shift_left(), rotate right(), rotate left()

231

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

bit _last()

Syntax:
N = bit_last (value, var)
N = bit_last(var)

Parameters:
value is a 0 to 1 to search for
var is a 16 bit integer

Returns:
An 8-bit integer

Function:

The first function will find the first occurrence of value in the var starting with the most
significant bit.

The second function will note the most significant bit of var and then search for the first
different bit.

Both functions return a 0 based result.

Availability:
24-bit Devices (P1C24, 30F/33F)

Requires:

Examples:
//Bit pattern 11101110 11111111
Intl6 var = OxXEEFF;
Int8 N = 0; //N is assigned 12
N = bit last (0, var); //N is assigned 12
N = bit last (var)

See Also:
shift_right(), shift_left(), rotate right(), rotate left()

bit_set()

Syntax:
bit_set(var, bit)

Parameters:
var may be any variable (any Ivalue)

232

Built-in Functions

bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Undefined

Function:

Sets the specified bit in the given variable. The least significant bit is O.
This function is the similar to: var |= (1<<bit);

For example, for a 16-bit variable, the bit number may be 0-15,

Availability:
All Devices

Requires:

Examples:
int x;
x=5;
bit set(x,3); // x 1s now 13

Example Files:
ex_patg.c

See Also:
bit_clear(), bit_test()

bit test()

Syntax:
value = bit_test (var, bit)

Parameters:
var may be any variable (any Ivalue)
bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Oor1l

Function:

Tests the specified bit in the given variable. The least significant bit is O.

This function is more efficient than, but otherwise similar to ((var & (1<<bit)) != 0)
For example, for a 16-bit variable, the bit number may be 0-15,

233

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Availability:
All Devices
Requires:
Examples:
if(bit test(x,3) || !bit _test (x,1)){ //either bit 3 is 1
//or bit 1 is 0
}
if (data!=0)
for (i=31; !bit test(data, i);i--) ; // 1 now has the most
//significant bit in
data

// that 1is set to a 1

Example Files:
ex_patg.c

See Also:
bit_clear(), bit_set()

brownout enable()

Syntax:
brownout_enable (value)

Parameters:
value — TRUE or FALSE

Returns:
Undefined

Function:
Enable or disable the software controlled brownout. Brownout will cause the PIC to reset
if the power voltage goes below a specific set-point.

Availability:

This function is only available on devices with a software controlled brownout. This may
also require a specific configuration bit/fuse to be set for the brownout to be software
controlled.

234

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Requires:

Examples:
brownout enable (TRUE) ;

See Also:

restart_cause()

bsearch()

Syntax:
ip = bsearch (&key, base, num, width, compare)

Parameters:

key - Object to search for

base - Pointer to array of search data

num - Number of elements in search data

width - Width of elements in search data

compare - Function that compares two elements in search data

Returns:

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key
is not found, the function returns NULL. If the array is not in order or contains duplicate
records with identical keys, the result is unpredictable.

Function:
Performs a binary search of a sorted array.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int nums[5]={1,2,3,4,5};
int compar (const void *argl,const void *arg?2);

void main () {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof(int), compar);

235

Built-in Functions

}

int compar (const void *argl,const void *arg?2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O

else return 1;

}

See Also:

gsort()

calloc()

Syntax:
ptr=calloc(nmem, size)

Parameters:
nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns:
A pointer to the allocated memory, if any. Returns null otherwise.

Function:

The calloc function allocates space for an array of nmem objects whose size is specified
by size.

The space is initialized to all bits zero.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int * iptr;
iptr=calloc(5,10); // iptr will point to a block of memory of
// 50 bytes all initialized to O

See Also:
realloc(), free(), malloc()

236

Built-in Functions

ceil()
Syntax:
result = ceil (value)

Parameters:
value is a float
pcp] Value is any float type

Returns:
A float
irep] A float with precision equal to value

Function:
Computes the smallest integer value greater than the argument. CEIL(12,67) is 13,00.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
// Calculate cost based
/on weight rounded up to the
next pound
cost = ceil (weight) * DollarsPerPound

See Also:
floor

clcl setup gate() clc2 setup gate() clc3 setup gate()
clc4 setup gate()

Syntax:

clcl_setup_gate(gate, mode);
clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);

Parameters:
gate — selects which data gate of the Configurable Logic Cell (CLC) module to setup,
value can be 1 to 4.

237

Built-in Functions

mode — the mode to setup the specified data gate of the CLC module into. The options
are:

clc_gate_and

clc_gate_nand

clc_gate_nor

clc_gate_or

clc_gate_clear

clc_gate_set

Returns:
Undefined
[reo1 Undefined with precision equal to value

Function:
Sets the logic function performed on the inputs for the specified data gate.

Availability:
Devices with a CLC module

Requires:
Undefined

Examples:
clcl setup gate(l, CLC GATE AND);
clcl setup gate(2, CLC GATE NAND);
clcl setup gate (3, CLC GATE CLEAR);
clcl setup gate (4, CLC _GATE SET);

See Also:
setup_clex(), clex _setup _input()

clcl setup input() clc2 setup input() clc3 setup input()
clc4 setup input()

Syntax:

clcl_setup_input(input, selection);
clc2_setup_input(input, selection);
clc3_setup_input(input, selection);
clc4_setup_input(input, selection);

Parameters:
input — selects which input of the Configurable Logic Cell (CLC) module to setup, value
can be 1to 4.

238

Built-in Functions

selection — the actual input for the specified input that is actually connected to the data

gates of the CLC module. The options are:
clc_input_ O
clc_input_1
clc_input_2
clc_input_3
clc_input_4
clc_input 5
clc_input 6
clc_input_7

Returns:
Undefined

Function:

Sets the input for the specified input number that is actually connected to all four data
gates of the CLC module. Please refer to the table CLCx DATA INPUT SELECTION in
the device's datasheet to determine which of the above selections corresponds to actual

input pin or peripheral of the device.

Availability:
Devices with a CLC module

Requires:
Undefined

Examples:
clcl setup input (
clcl setup input(
clcl setup input(
clcl setup input (

, CLC_INPUT 0);
, CLC_INPUT 1);
, CLC_INPUT 2)
, CLC_INPUT 3)

’

’

1
2
3
4

See Also:
setup clex(), clex _setup gate()

clear dmt()

Syntax:
clear_dmt();

Parameters:

239

Built-in Functions

Returns:

Function:
Used to clear the Deadman Timer (DMT) peripheral.

Availability:
Only on devices that have the DMT peripheral.
Requires:
Examples:
if ((dmt_status() & DMT_CLEAR WINDOW OPEN) == DMT CLEAR WINDOW_ OPEN)

clear dmt();

See Also:
read _dmt(), disable dmt(), enable _dmt(), dmt status(), setup _dmt()

clear interrupt()

Syntax:
clear_interrupt(level)

Parameters:
level - a constant defined in the devices.h file

Returns:
Undefined

Function:

Clears the interrupt flag for the given level. This function is designed for use with a
specific interrupt, thus eliminating the GLOBAL level as a possible parameter. Some
chips that have interrupt on change for individual pins allow the pin to be specified like
INT_RAL.

Availability:
All Devices

Requires:

Examples:
clear interrupt (int timerl);

240

Built-in Functions

See Also:
enable interrupts() , enable_interrupts , #INT , #INT , Interrupts Overview
disable _interrupts(), interrupt actvie()

clear pwm1 interrupt() clear pwm?2 interrupt()
clear pwm3 interrupt() clear pwm4 interrupt()
clear pwm5 interrupt() clear pwmo6 interrupt()

Syntax:

clear_pwml_interrupt (interrupt)
clear_pwm2_interrupt (interrupt)
clear_pwmg3_interrupt (interrupt)
clear_pwm4_interrupt (interrupt)
clear_pwmb5_interrupt (interrupt)
clear_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

pwm_period_interrupt

pwm_duty_interrupt

pwm_phase_interrupt

pwm_offset_interrupt

Returns:
Undefined

Function:
Clears one of the above PWM interrupts, multiple interrupts can be cleared by or'ing
multiple options together.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
clear pwml interrupt (PWM PERIOD INTERRUPT) ;
clear_pwml_interrupt(PWM_PERIOD_INTERRUPT | PWM_DUTY_INTERRUPT)

241

Built-in Functions

See Also:
setup_pwm(), set_pwm_duty(), set pwm_ phase(), set_pwm_period(), set pwm_offset(),
enable pwm interrupt(), disable pwm _interrupt(), pwm_interrupt _active()

cog restart() cog? restart() cog3 restart()
cog4 restart()

Syntax:
cog_restart();
cog2_restart();
cog3_restart();
cog4_restart();

Parameters:

Function:
To restart the Complementary Output Generator (COG) module after an auto-shutdown
event occurs, when not using auto-restart option of module.

Availability:
Devices with a COG module
Requires:
Examples:
if (cog_status () ==COG_AUTO_SHUTDOWN)

cog_restart();

See Also:
setup _cog(), set cog dead band(), set cog_blanking(), set cog phase(), cog_status()

cog status() cog? status() cog3 status() cog4 status()

Syntax:
value=cog_status();
value=cog2_status();
value=cog3_status();
value=cog4_status();

242

Built-in Functions

Parameters:

Returns:
value - the status of the COG module

Function:
To determine if a shutdown event occurred on the Complementary Output Generator
(COG) module.

Availability:
Devices with a 16-bit PWM module
Requires:
Examples:
if (cog_status () ==COG_AUTO_SHUTDOWN)

cog_restart();

See Also:
setup _coq(), set cog_dead band(), set cog blanking(), set cog_phase(), cog_restart()

crc calc(mode)

Syntax:

Result = crc_calc (data,[width]);

Result = crc_calc(ptr,len,[width]);

Result = crc_calc8(data,[width]);

Result = crc_calc8(ptr,len,[width]);

Result = crc_calc16(data,[width]); /lsame as crc_calc()
Result = crc_calc16(ptr,len,[width]); /[same as crc_calc()
rep] Result = crc_calc32(data,[width]);

rep] Result = crc_cale32(ptr,len,[width]);

Parameters:

data- This is one double word, word or byte that needs to be processed when using
crc_calcl6()
crc_calc8()
[pcp] crc_calc32()

ptr- is a pointer to one or more double words, words or bytes of data

243

Built-in Functions

len- number of double words, words or bytes to process for function calls
crc_calcl6()
crc_calc8()
[pcp] crc_cale32()

width- optional parameter used to specify the input data bit width to use with the
functions

crc_calcl6()

crc_calc8()

pcp] crc_calc32()

If not specified, it defaults to the width of the return value of the function
8-bit for crc_calc8()
16-bit for crc_calc16()
e 32-bit for crc_calc32()

Returns:
Returns the result of the final CRC calculation.

Function:

Calculates the CRC of the passed data using the CRC engine. The function that should
be used to do the calculation depends on the CRC polynomial used. For polynomials
less than or equal 8 bits, crc_calc8() should be used. For polynomials greater than 8 bits,
crc_calc16() should be used. Data widths less than or equal to 16 bits are supported.

rep] Calculates the CRC of the passed data using the CRC engine. The crc_calc32()
function is only available for device with a 32 bit CRC peripheral. The function that
should be used to do the calculation depends on the CRC polynomial used. For
polynomials less than or equal to 8 bits, crc_calc8() should be used. For polynomials
greater than 8 bits and less than or equal to 16 bits, crc_calc16() should be used. For
polynomials greater than 16 bits, crc_calc32() should be used. For devices with a 32 bit
CRC peripheral, data widths less than or equal to 32 bits are supported, and for device
with a 16 bit CRC peripheral data widths less than or equal to 16 bits are supported.

Availability:
Only Devices with a built-in CRC module
Requires:
Examples:
intl6 data[8];
Result = crc _calc(data,8);

244

Built-in Functions

Example Files:
ex_crc_hw.c

See Also:
setup _crc(); crc_init()

crc init(mode)

Syntax:
crc_init (data);

Parameters:
data- This will setup the initial value used by write CRC shift register. Most commonly,
this register is set to 0x0000 for start of a new CRC calculation.

Returns:
Undefined

Function:
Configures the CRCWDAT register with the initial value used for CRC calculations.

Availability:
Only Devices with a built-in CRC module
Requires:
Examples:
crc_init (); // Starts the CRC accumulator out at O

crc_init (OXFEEE); // Starts the CRC accumulator out at OxFEEE

See Also:
setup_crc(), crc_calc(), crc_calc8()

crc_read()

Syntax:
value = read();

Parameters:

245

Returns:
A 16-bit integer.

Function:
Returns the current CRC Accumulator value.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

Examples:

intle value;
value = crc_read();

See Also:
setup crc(), crc_init(), crc_calc(), crc_write()

crc write()

Syntax:
crc_write(data, [data_width]));

Parameters:

data is the 16 bit value to write

Built-in Functions

data_width is an optional parameter used to specify the width of the input data.

Returns:
Undefined

Function:
Used to write data into the CRC data registers.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

246

Built-in Functions

Examples:
crc_write(data);

See Also:
setup_crc(), crc_init(), crc_calc(), crc_read()

cwg restart() cwqg?2 restart() cwag3 restart()

Syntax:
cwg_restart();
cwg?2_restart();
cwg3_restart();

Parameters:

Function:
To restart the CWG module after an auto-shutdown event occurs, when not using auto-
raster option of module.

Availability:
Devices with a CWG module

Requires:

Examples:
if (cwg_status() == CWG _AUTO SHUTDOWN)
cwg_restart();

See Also:
setup _cwg(), cwg_status()

cwg status() cwqg?2 status() cwqg3 status()

Syntax:
value = cwg_status();
value = cwg2_status();

247

Built-in Functions

value = cwg3_status();

Parameters:

Returns:
The status of the CWG module

Function:
To determine if a shutdown event occurred causing the module to auto-shutdown.

Availability:
Devices with a CWG module

Requires:

Examples:
if (cwg_status() =
cwg_restart();

CWG_AUTO_SHUTDOWN)

See Also:
setup_cwq(), cwg_restart()

dac write()

Syntax:

dac_write (value);

dac_write2 (value);
dac_write3(value);
dac_writed(value);
dac_write5(value);
dac_write6(value);
dac_write7(value);
dac_write8(value);

rep] dac_write (channel, value);
pep] dac_write (module, value);
rep) dac_write (module, value, [low_value]);

Parameters:
value - 8-bit or 16-bit integer value to be written to the DAC module

248

Built-in Functions

rep] channel - 16-bit integer value to be written to the DAC module channel: Channel to
be written to. Constants are:

DAC_RIGHT

DAC_DEFAULT

DAC_LEFT

irep; module - DAC module to write value to.

rco] low_value - Optional 16-bit integer value for devices with an Analog Comparator
with Slope Compensation DAC peripheral to set the DAC low data value. In Hysteric,
Slope Generator and Triangle modes, this specifies the low data value and/or limit for the
DAC module.

Returns:

Function:
This function will write a 8-bit or 16-bit integer to the specified DAC module.

Availability:
Devices with an analog-to-digital converter (DAC).

Requires:

Examples:
dac_write (20);
[PCD]
dac_write (DAC_RIGHT, 500);
dac _write(l, DacValue);
dac _write(l, DacValue, DacLowValue);

See Also:
setup_dac(), DAC Overview, See header file for device selected

dci data received()

Syntax:
dci_data_received()

Parameters:

249

Built-in Functions

Returns:
An intl. Returns true if the DCI module has received data.

Function:
Use this function to poll the receive buffers. It acts as a kbhit() function for DCI.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
if (dci data received())
{ //read data, load buffers, etc..
}
}

See Also:
DCI Overview, setup dci(), dci_start(), dci_write(), dci_read(), dci_transmit_ready()

dci_read()

Syntax:
dci_read(left_ channel, right_ channel);

Parameters:

left_channel- A pointer to a signed intl16 that will hold the incoming audio data for the left
channel (on a stereo system). This data is received on the bus before the right channel
data (for situations where left & right channel does have meaning)

right_channel- A pointer to a signed int16 that will hold the incoming audio data for the
right channel (on a stereo system). This data is received on the bus after the data in left
channel.

Returns:
Undefined

Function:

Use this function to read two data words. Do not use this function with DMA. This function
is provided mainly for applications involving a stereo codec.

250

Built-in Functions

If your application does not use both channels but only receives on a slot (see
setup_dci), use only the left channel.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
dci read(&left channel, &right channel);
dci write(&left channel, &right channel);

}

See Also:
DCI Overview, setup dci(), dci_start(), dci_write(), dci_transmit_ready(),
dci_data_received()

dci_start()

Syntax:
dci_start();

Parameters:

Returns:
Undefined

Function:

Starts the DCI module’s transmission. DCI operates in a continous transmission mode
(unlike other transmission protocols that transmit only when they have data). This
function starts the transmission. This function is primarily provided to use DCI in
conjunction with DMA

Availability:
Devices with a DCI

Requires:

251

Built-in Functions

Examples:
dci initialize((I2S MODE | DCI MASTER |
DCI CLOCK OUTPUT | SAMPLE RISING EDGE |
UNDERFLOW_ LAST |
MULTI DEVICE BUS),DCI 1WORD FRAME |
DCI 16BIT WORD | DCI_ 2WORD INTERRUPT,
RECEIVE SLOTO | RECEIVE SLOT1, TRANSMIT SLOTO |
TRANSMIT SLOT1, 6000);

dci start()
See Also:

DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(),
dci_data_received()

dci transmit ready()

Syntax:
dci_transmit_ready()

Parameters:

Returns:
An intl. Returns true if the DCI module is ready to transmit (there is space open in the
hardware buffer)

Function:
Use this function to poll the transmit buffers

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
if (dci _transmit ready())
{ //transmit data, load
buffers, etc..
}
}

252

Built-in Functions

See Also:
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(), dci_data_received()

dci write()

Syntax:
dci_write(left_channel, right_channel);

Parameters:

left channel - A pointer to a signed int16 that holds the outgoing audio data for the left
channel (on a stereo system). This data is transmitted on the bus before the right channel
data (for situations where left & right channel does have meaning)

right channel - A pointer to a signed int16 that holds the outgoing audio data for the right
channel (on a stereo system). This data is transmitted on the bus after the data in left
channel.

Returns:
Undefined

Function:
Use this function to transmit two data words. Do not use this function with DMA. This
function is provided mainly for applications involving a stereo codec.

If the application does not use both channels but only transmits on a slot (see
setup_dci()), use only the left channel. If transmit more than two slots, call this function
multiple times.

Availability:
Devices with a DCI

Requires:

Examples:
while (1)
{
dci read(&left channel, &right channel);
dci write(&left channel, &right channel)

253

Built-in Functions

See Also:
DCI Overview, setup dci(), dci_start(), dci_read(), dci_transmit_ready(),
dci_data_received()

delay cycles()

Syntax:
delay_cycles (count)

Parameters:
count - a constant 1-255

Returns:
Undefined

Function:
Creates code to perform a delay of the specified number of instruction clocks (1-255). An
instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:

Examples:
delay cycles(1); // Same as a NOP
delay cycles(25); // At 20 mhz a 5us delay

Example Files:
ex_cust.c

See Also:
delay us(), delay ms()

delay ms()

Syntax:
delay_ms (time)

254

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

This function will create code to perform a delay of the specified length. Time is specified
in milliseconds. This function works by executing a precise number of instructions to
cause the requested delay. It does not use any timers. If interrupts are enabled the time
spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay (clock=20000000)
delay ms(2);

void delay seconds (int n) {
for (;n!=0; n- -)
delay ms(1000);

}

Example Files:
ex_sqgw.c

See Also:
delay us(), delay cycles(), #USE DELAY

255

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

delay us()

Syntax:
delay_us (time)

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and variable delays
are calls to a function. This function works by executing a precise number of instructions
to cause the requested delay. It does not use any timers. If interrupts are enabled the
time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay(clock=20000000)

do {
output high (PIN BO);
delay us (duty);
output low (PIN BO);
delay us (period-duty);
} while (TRUE) ;

Example Files:
ex_sqgw.c

See Also:
delay ms(), delay cycles(), #USE DELAY

256

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

disable dmt()

Syntax:
disable_dmt();

Parameters:

Function:

Disable the Deadman Timer (DMT). This function only works if the DMT_SW
configuration fuses has been set. If the DMT configuration fuse is set, then the DMT is
always enabled.

Availability:
Only on devices that have the DMT peripheral.

Requires:

Examples:
disabled dmt () ;

See Also:
clear_dmt(), read dmt(), enable _dmt(), dmt status(), setup _dmt()

disable interrupts()

Syntax:

disable_interrupts (level)

ipep) disable_interrupts (name)

ipep) disable_interrupts (INTR_XX)
ipcp] disable_interrupts (expression)

Parameters:
level - a constant defined in the devices .h file

pcp] name - a constant defined in the devices .h file

rep] INTR_XX — Allows user selectable interrupt options like intr_normal, intr_alternate,
intr_level

257

Built-in Functions

[Pcp] eXpression — A non-constant expression

Returns:
Undefined
irep] When intr_levelx is used as a parameter, this function will return the previous level.

Function:

Disables the interrupt at the given level. The GLOBAL level will not disable any of the
specific interrupts but will prevent any of the specific interrupts, previously enabled to be
active. Valid specific levels are the same as are used in #INT_xxx and are listed in the
devices .h file. GLOBAL will also disable the peripheral interrupts on devices that have it.

Note that it is not necessary to disable interrupts inside an interrupt service routine since

interrupts are automatically disabled. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RAL.

[PCD]

Disables the interrupt for the given name. Valid specific names are the same as are used
in #INT_xxx and are listed in the devices .h file. Note that it is not necessary to disable
interrupts inside an interrupt service routine since interrupts are automatically disabled.
intr_glogal — Disables all interrupts that can be disabled

intr_normal — Use normal vectors for the ISR

intr_alternate — Use alternate vectors for the ISR

intr_levelQ /intr_level7 — Disables interrupts at this level and below, enables interrupts
above this level

intr_cn_pin|pin_xx — Disables a CN pin interrupts
expression — Disables interrupts during evaluation of the expression.

Availability:
Some Devices (PCM and PCH) with interrupts and all 24-bit (PCD) devices.

Requires:
Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples:
disable interrupts (GLOBAL) ; // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

258

Built-in Functions

enable interrupts (ADC_DONE) ;
enable interrupts (RB_CHANGE) ; // these enable the interrupts
// but since the GLOBAL is
disabled they
// are not activated until the
following
// statement:
enable interrupts (GLOBAL) ;

Example Files:
ex_sisr.c, ex_stwt.c

See Also:
enable_interrupts(), clear_interrupt (), #INT xxxX, Interrupts Overview, interrupt_active()

disable pwml interrupt() disable pwm?2 interrupt()
disable pwm3 interrupt() disable pwm4 interrupt()
disable pwm5 interrupt() disable pwm6 interrupt()

Syntax:

disable_pwm1_interrupt (interrupt)
disable_pwm?2_interrupt (interrupt)
disable_pwm3_interrupt (interrupt)
disable_pwm4 _interrupt (interrupt)
disable_pwmb5_interrupt (interrupt)
disable_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

pwm_period_interrupt

pwm_duty_interrupt

pwm_phase_interrupt

pwm_offset_interrupt

Returns:
Undefined

Function:

Disables one of the above PWM interrupts, multiple interrupts can be disabled by or'ing
multiple options together.

259

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
disable interrupts (GLOBAL) ; // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

enable interrupts (ADC_DONE) ;
enable interrupts (RB_CHANGE) ; // these enable the interrupts
// but since the GLOBAL is
disabled they
// are not activated until the
following
// statement:
enable interrupts (GLOBAL) ;

See Also:
setup_pwm(), set_ pwm_duty(), set pwm_phase(), set pwm_period(), set pwm _offset(),
enable pwm interrupt(), clear pwm interrupt(), pwm _interrupt active()

div() Idiv()
Syntax:

idiv=div(num, denom)
[div =Idiv(Inum, Idenom)

Parameters:

num and denom are signed integers.

num is the numerator and denom is the denominator
Inum and Idenom are signed longs

rep] Inum and Idenom are signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator

Returns:

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function
returns a structure of type div_t, comprising of both the quotient and the remainder. The
Idiv function returns a structure of type Idiv_t, comprising of both the quotient and the
remainder.

260

Built-in Functions

Function:

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function
returns a structure of type div_t, comprising of both the quotient and the remainder. The
Idiv function returns a structure of type Idiv_t, comprising of both the quotient and the
remainder.

Availability:
All Devices

Requires:
#INCLUDE <STDLIB.H>

Examples:
div_t idiv;
ldiv_t lidiv;

idiv=div (3, 2); //idiv will contain quot=1 and
rem=1
1idiv=1div (300, 250) ; //1idiv will contain lidiv.quot=1

and lidiv.rem=5

dma start()

Syntax:

dma_start(channel, mode, destAddr, sourceAddr, destCount, sourceCount);
rep] dma_start(channel, mode, addressA, addressB, count);

rep] dma_start(channel, mode, destAddr, sourceAddr, count);

Parameters:
Channel - The DMA channel to use.

mode - The mode to use for the DMA transfers. Constants for setting the mode are
defined in the device's header file. See the header file for all possible options.

destAddr - The start RAM address of the destination address to use, can be anywhere in
the GPR or SFR memory areas.

sourceAddr - The start address of the source address to use, can be anywhere in RAM,
EEPROM or Flash program memory areas. The memory area of the address reads from
is determined by one of the settings that can be made with the mode parameter.

destCount - The number of bytes to transfer to the destination address.

261

Built-in Functions

sourceCount - The number of bytes to transfer from the source address for each DMA
trigger.

irep] addressA - The start RAM address of the buffer to use located within the DMA RAM
bank.

pcp] addressB - If using DMA_PING_PONG mode the start RAM address of the second
buffer to use located within the DMA RAM bank.

ircp) destAddr - The start RAM address of the destination address to use, located within
the DMA RAM bank. Address data is moved from.

rep] SsourceAddr - The start RAM address of the source address to use, located within
the DMA RAM bank. Address data is moved to.

[rco] count - The number of DMA transfers to do. For devices with Type 1 DMA
peripheral, this should be one less the actual number of transfers to do. For devices with
Type 2 DMA peripheral, this should be equal to the actual number of transfers to do.

Returns:
Void

Function:
Starts the DMA transfer for the specified channel in the specified mode of operation and
assigns the RAM addresses to use the DMA transfer.

Availability:

Devices that have the DMA peripheral. The version of the function used depends on the
type of DMA peripheral it has. Use getenv("DMA") to determine the type the device has.
teep) It will return O for no DMA peripheral, 1 for Type 1 and 2 for Type 2. For devices
with Type 1 uses first version of the function and for devices with Type 2 uses second
version of the function.

Requires:

Examples:
dma start(l, DMA SOURCE ADDR IS SFR GPR |
DMA SOURCE ADDR UNCHANGED |
DMA INC DEST ADDR | DMA HW TRIGGER STARTS XFER | DMA CONTINUOUS,
RxBuffer, getenv("SFR:UIRXB"), DMA BUFFER SIZE, 1);

[PCD]
dma_start (0,DMA PING_PONG|DMA CONTINUOUS, RxBuffer[0],
RxBuffer[1l], (DMA BUFFER SIZE-1)); // Type

262

Built-in Functions

1

dma_start (0,DMA SOURCE ADDR UNCHANGED|DMA INC DEST ADDR]|

DMA REPEATED|DMA ONE SHOT,RxBuffer,getenv ("SFR:UIRXREG"),

DMA BUFFER SIZE); // Type
2

Example Files:
ex_dma_ uart rx.c

See Also:
setup_dma(), dma_status()

dma status()

Syntax:
Value = dma_status(channel);

Parameters:
Channel — The channel in which the status is to be queried.

Returns:
The DMA channel's status. See the device header file for mask values that can be
AND'ed with return value.

Function:
This function will return the status of the specified channel in the DMA module.

Availability:
Devices that have the DMA module

Requires:

Examples:
Int8 value;
value = dma status(3); // This will return the status of
channel 1 of the DMA module

See Also:
setup_dma(), dma_start()

263

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

dmt status()

Syntax:
Status = dmt_status();

Parameters:

Returns:

An int8 value indicating the status of the DT peripheral. See the device's header file for
constants that can be and'ed with the return value to determine the state of the individual
status bits.

Function:
Used to determine the status of the Deadman Timer (DMT) peripheral.

Availability:
Only on devices that have the DMT peripheral.
Requires:
Examples:
if ((dmt_status() & DMT_CLEAR WINDOW OPEN) == DMT_CLEAR WINDOW_OPEN)

clear dmt();

See Also:
clear_dmt(), read dmt(), disable _dmt(), enable dmt(), setup dmt()

enable dmt()

Syntax:
enable_dmt();

Parameters:

Function:

Enable the Deadman Timer (DMT). This function only works if the DMT_SW
configuration fuses has been set. If the DMT configuration fuse is set, then the DMT is
always enabled.

264

Built-in Functions

Availability:
Only on devices that have the DMT peripheral.

Requires:

Examples:
enabled dmt () ;

See Also:
clear_dmt(), read dmt(), disable _dmt(), dmt_status(), setup_dmt()

enable interrupts()

Syntax:

enable_interrupts (level)

[pcp] enable_interrupts (name)
irco] enable_interrupts (INTR_XX)

Parameters:
level - is a constant defined in the devices *.h file

pcp] name- a constant defined in the devices .h file

rep] INTR_XX — Allows user selectable interrupt options like intr_normal, intr_alternate,
intr_level

Returns:
Undefined

Function:
This function enables the interrupt at the given level. An interrupt procedure should have
been defined for the indicated interrupt.

The GLOBAL level will not enable any of the specific interrupts, but will allow any of the
specified interrupts previously enabled to become active. Some chips that have an
interrupt on change for individual pins all the pin to be specified, such as INT_RAL. For
interrupts that use edge detection to trigger, it can be setup in the enable_interrupts()
function without making a separate call to the set_int_edge() function.

265

Built-in Functions

Enabling interrupts does not clear the interrupt flag if there was a pending interrupt prior
to the call. Use the clear_interrupt() function to clear pending interrupts before the call to
enable_interrupts() to discard the prior interrupts.

[PCD]
name -Enables the interrupt for the given name. Valid specific names are the same as
are used in #INT_xxx and are listed in the devices .h file.

intr_global — Enables all interrupt levels (same as INTR_LEVELO)
intr_normal — Use normal vectors for the ISR
intr_alternate — Use alternate vectors for the ISR

intr_levelO.... intr_level7 — Enables interrupts at this level and above, interrupts at lower
levels are disabled

intr_cn_pin | pin_xx — Enables a CN pin interrupts

Availability:
Devices that have interrupts and all 24-bit devices.

Requires:
Should have a #INT_XXXX to define the ISR, and constants are defined in the devices
*.h file.

Examples:
enable interrupts (GLOBAL) ;
enable interrupts (INT TIMERO) ;
enable interrupts(INT EXT H2L)

[PCD]

enable interrupts (INT TIMERO) ;

enable interrupts (INT TIMERI);

enable interrupts (INTR CN PIN|Pin BO);

Example Files:
ex_sisr.c, ex_stwi.c

See Also:
disable interrupts(), clear interrupt (), ext_int edge(), #INT xxxx, Interrupts Overview,
interrupt_active()

266

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

erase program memory()

Syntax:
erase_program_memory (address);

Parameters:
address - is 32 bits. The least significant bits may be ignored.

Returns:
Undefined

Function:
Erases FLASH_ERASE_SIZE bytes to OXFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part.

Family FLASH ERASE SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)

NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program memory access.

Availability:
All Devices

Requires:

Examples:
Int32 address = 0x2000;

erase program memory (address) ; // erase block of memory
from 0x2000
// to 0x2400 for a
PIC24HJ/FJ /33FJ
//device, or erase 0x2000
to 0x2040
//for a dsPIC30F chip

See Also:
write program eeprom() , write program memory(), Program Eeprom Overview

267

Built-in Functions

enable pwml1 interrupt() enable pwm?2 interrupt()
enable pwm3 interrupt() enable pwm4 interrupt()
enable pwm5 interrupt() enable pwm6 interrupt()

Syntax:

enable_pwm1_interrupt (interrupt)
enable_pwm?2_interrupt (interrupt)
enable_pwm3_interrupt (interrupt)
enable_pwm4_interrupt (interrupt)
enable_pwmb5_interrupt (interrupt)
enable_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

PWM_PERIOD_INTERRUPT

PWM_DUTY_INTERRUPT

PWM_PHASE_INTERRUPT

PWM_OFFSET_INTERRUPT

Returns:

Function:

Enables one of the above PWM interrupts, multiple interrupts can be enabled by or'ing
multiple options together. For the interrupt to occur, the overall PWMx interrupt still
needs to be enabled and an interrupt service routine still needs to be created.

Availability:
Devices with a 16-bit PWM module.

Requires:

Examples:
enable pwml interrupt (PWM PERIOD INTERRUPT) ;
enable pwml interrupt (PWM PERIOD INTERRUPT |
PWM_DUTY_INTERRUPT)

See Also:
setup_pwm(), set pwm_duty(), set pwm_phase(), set pwm_period(), set pwm _offset(),
disable pwm _interrupt(), clear pwm interrupt(), pwm _interrupt active()

268

Built-in Functions

erase eeprom()

Syntax:
erase_eeprom (address);

Parameters:
address is 8 bits on PCB parts

Returns:
Undefined

Function:
This will erase a row of the EEPROM or Flash Data Memory.

Availability:
PCB devices with EEPROM like the 12F519

Requires:

Examples:
erase eeprom(0) ; // erase the first row of the EEPROM (8 bytes)

See Also:
write _eeprom(), read eeprom(), Data EEPROM Overview

erase program memory()

Syntax:
erase_program_eeprom (address);

Parameters:

address - is 16 on PCM parts and 32 bits on PCH parts. The least significant bits may be
ignored.

pcp] address - is 32 bits. The least significant bits may be ignored.

Returns:

Function:

Erases FLASH_ERASE_SIZE bytes to OxFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part. For example, if it is 64 bytes then
the least significant 6 bits of address is ignored.

269

Built-in Functions

rep] For example, if it is 128 bytes then the least significant 7 bits of address is ignored.

See write_program_memory() peo] EEPROM Overview for more information on program
memory access.

Availability:
Only devices that allow writes to program memory.

Requires:

Examples:
for (i=0x1000;i<=0x1fff;i+=getenv ("FLASH ERASE SIZE"))
erase program memory (i) ;

See Also:
write program eeprom(), write program memory(), Program Eeprom Overview

exp()

Syntax:
result = exp (value)

Parameters:
value is a float
pcp] Value is any float type

Returns:
A float
ireo] A float with a precision equal to value

Function:
Computes the exponential function of the argument. This is e to the power of value where
e is the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable.
The user can check the errno to see if an error has occurred and print the error using the
perror function.

Range error occur in the following case: exp when the argument is too large

Availability:
All Devices

270

Requires:
#INCLUDE <math.h>

Built-in Functions

Examples:

// Calculate x to the power of y
x_power y = exp(y * log(x));
See Also:

pow(), loda(), 10g10()

ext int edge()

Syntax:
ext_int_edge (source, edge)

Parameters:

source is a constant 0,1 or 2 for the PIC18XXX and O otherwise.

[pcp] Source is a constant from 0 to 4.
Source is optional and defaults to 0.

edgeisaconstantH_TO_L or L_TO_H representing "high to low" and "low to high"

Returns:
Undefined

Function:

Determines when the external interrupt is acted upon. The edge may be L_TO_H or

H_TO_L to specify the rising or falling edge.

Availability:
Only devices with interrupts

Requires:
Constants are in the devices .h file

Examples:
ext int edge(2, L TO H); // Set up PIC18 EXT2
ext int edge(2, L TO H); // Set up external interrupt 2 to
interrupt
// on rising edge
ext int edge(H TO L); // Sets up EXT

271

Built-in Functions

ext int edge(H TO L); // Sets up external interrupt 0 to
interrupt
// on falling edge

Example Files:
ex_wakup.c

See Also:
#INT_EXT , enable_interrupts() , disable_interrupts() , #INT_EXT , enable_interrupts() ,
disable_interrupts , Interrupts Overview

fabs()

Syntax:
result=fabs (value)

Parameters:
value is a float
pcp] Value is any float type

Returns:
result is a float
ircp] result is a float with precision to value

Function:
The fabs() function computes the absolute value of a float

Availability:
All Devices

Requires:
Constants are in the devices .h file

Examples:
float result;
result=fabs (-40.0) // result is 40.0

See Also:

abs(), labs()

getc() getch() getchar() fgetc()

Syntax:
value = getc()

272

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

value = fgetc(stream)
value=getch()
value=getchar()

Parameters:
stream is a stream identifier (a constant byte)

Returns:
An 8-bit character

Function:

This function waits for a character to come in over the RS232 RCV pin and returns the
character.

In order to not hang forever waiting for an incoming character use kbhit() to test for a
character available.

If a built-in USART is used the hardware can buffer 3 characters otherwise getc() must
be active while the character is being received by the device.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN (the
last USE RS232).

Availability:
All Devices

Requires:
#USE RS232

Examples:
printf ("Continue (Y,N)?2");
do {
answer=getch () ;
}

while (answer!='Y' && answer!='N');

#use rs232 (baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)

#use rs232(baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)

#use rs232(baud=9600, xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)

273

Built-in Functions

fprintf (DEBUG, "Got a CR\r\n");
}

Example Files:
ex_stwt.c

See Also:
putc(), kbhit(), printf(), #USE RS232, input.c, RS232 1/0 Overview

gets() foets()

Syntax:
gets (string)
value = fgets (string, stream)

Parameters:
string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Reads characters (using getc()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more versatile
get_string() function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the
last USE RS232).

Availability:
All Devices

Requires:
#USE RS232

Examples:
char string[30];

printf ("Password: ");

gets(string);

if (strcmp(string, password))
printf ("OK") ;

274

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
getc(), get_string in input.c

floor

Syntax:
result = floor (value)

Parameters:
value is a float
pcp] Value is any float type

Returns:
Result is a float
rep] Result is a float with precision equal to value

Function:
Computes the greatest integer value not greater than the argument. Floor (12.67) is
12.00

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
// Find the fractional part of a value
frac = value - floor(value);
See Also:
ceil()

fmod()

Syntax:
result= fmod (vall, val2)

Parameters:
vall is a float
ierep] vVall is any float type
val2 is a float
[pcp] Val2 is any float type

275

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
Result is a float
rep] Result is a float with precision equal to input parameters vall and val2

Function:
Returns the floating point remainder of vall/val2. Returns the value vall - i*val2 for some

integer “i” such that, if val2 is nonzero, the result has the same sign as val1 and
magnitude less than the magnitude of val2.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
result=fmod (3, 2) ; // result is 1

printf() fprintf()

Syntax:
printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:
String is a constant string or an array of characters null terminated.

C String is a constant string. Note that format specifiers cannot be used in RAM strings.

Values is a list of variables separated by commas, fname is a function name to be used
for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte)

Returns:
Undefined

276

Built-in Functions

Function:

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When variables
are used this string must be a constant. The % character is used within the string to
indicate a variable value is to be formatted and output. Longs in the printf may be 16 or
32 bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT
(the last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating
point and %w output. t is the type and may be one of the following:

c -- string or character

u --unsigned

d --signed int

Lu -- long unsigned int

Ld -- long signed int

X -- hex int (lower case)

X -- hex int (upper case

Lx -- hex long int (lower case)

LX -- hex long int (upper case)

f --float with truncated decimal

g -- float with rounded decimal

e --float in exponential format

w -- unsigned int with decimal place inserted. Specify two numbers for n.

The first is a total field width. The second is the desired humber of decimal
places.

Example Formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

277

Built-in Functions

%4X 0012 00OFE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.

Availability:

All Devices

Requires:

#USE RS232 (unless fname is used)

Examples:
byte x,v,2z;
printf ("HiThere");
printf ("RTCCValue=>%2x\r\n",get rtcc());
printf ("%2u $X %4X\r\n",x,v,2z);
printf (LCD_PUTC, "n=%u",n);
Example Files:
ex_admm.c, ex_lcdkb.c

See Also:
atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0 Overview

putc() putchar() fputc()

Syntax:

putc (cdata)

putchar (cdata)
fputc(cdata, stream)

Parameters:
cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

This function sends a character over the RS232 XMIT pin. A #USE RS232 must appear
before this call to determine the baud rate and pin used. The #USE RS232 remains in
effect until another is encountered in the file.

278

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

If This function sends a character over the RS232 XMIT pin. A #USE RS232 must appear
before this call to determine the baud rate and pin used. The #USE RS232 remains in
effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to STDOUT
(the last USE RS232). is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

Availability:
All Devices

Requires:
#USE RS232

Examples:
putc ('*");
for (1=0; i<10; i++)
putc (buffer[i]);
putc (13)

Example Files:
ex_tgetc.c

See Also:
getc(), printf(), #USE RS232, RS232 I/O Overview

puts() fputs()

Syntax:
puts (string).
fputs (string, stream)

Parameters:
string is a constant string or a character array (null-terminated).
stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Sends each character in the string out the RS232 pin using putc(). After the string is sent
a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general printf() is more
useful than puts().

279

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

If fputs() is used then the specified stream is used where puts() defaults to STDOUT
(the last USE RS232)

Availability:
All Devices

Requires:
#USE RS232

Examples:
puts(" —-————————- ")
puts(" | HI ")
puts(" --—-—————-—- ")

See Also:
printf(), gets(), RS232 1/O Overview

free()

Syntax:
free(ptr)

Parameters:
ptr is a pointer earlier returned by the calloc, malloc or realloc

Returns:
No Value

Function:

The free function causes the space pointed to by the ptr to be deallocated, that is made
available for further allocation. If ptr is a null pointer, no action occurs. If the ptr does not
match a pointer earlier returned by the calloc, malloc or realloc, or if the space has
been deallocated by a call to free or realloc function, the behavior is undefined.

Availability:
All Devices

Requires:
#INCLUDE <stdlibm.h>

Examples:
int * iptr;

iptr=malloc(10);

280

Built-in Functions

free (iptr) // iptr will be deallocated

See Also:
realloc(), malloc(), calloc()

frexp()

Syntax:
result=frexp (value, &exp)

Parameters:

value is a float

pcp] Value is any float type

exp is a signed int

Returns:

result is a float

rco] result is a float with precision equal to value

Function:

The frexp function breaks a floating point number into a normalized fraction and an
integral power of 2. It stores the integer in the signed int object exp. The result is in the
interval [1/2 tol) or zero, such that value is result times 2 raised to power exp. If value is

zero then both parts are zero.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
signed int exp;
result=frexp (.5, &exp) ; //

See Also:
Idexp(), exp(), lod(), log10(), modf()

281

result is .5 and exp is O

Built-in Functions

scanf() fscanf()

Syntax:

scanf(cstring);

scanf(cstring, values...)
fscanf(stream, cstring, values...

Parameters:
cstring is a constant string.

values is a list of variables separated by commas.
stream is a stream identifier

Returns:
0 if a failure occurred, otherwise it returns the number of conversion specifiers that were
read in, plus the number of constant strings read in.

Function:

Reads in a string of characters from the standard RS-232 pins and formats the string
according to the format specifiers. The format specifier character (%) used within the
string indicates that a conversion specification is to be done and the value is to be saved
into the corresponding argument variable. A %% will input a single %. Formatting rules
for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the
last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99 specifying the
field width, the number of characters to be inputted. t is the type and maybe one of the
following:

c Matches a sequence of characters of the number specified by the field
width (1 if no field width is specified). The corresponding argument shall
be a pointer to the initial character of an array long enough to accept the
sequence.

s Matches a sequence of non-white space characters. The corresponding
argument shall be a pointer to the initial character of an array long
enough to accept the sequence and a terminating null character, which
will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument shall
be a pointer to an unsigned integer.

282

Built-in Functions

Lu Matches a long unsigned decimal integer. The corresponding argument
shall be a pointer to a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be
a pointer to a signed integer.

Ld Matches a long signed decimal integer. The corresponding argument
shall be a pointer to a long signed integer.

0 Matches a signed or unsigned octal integer. The corresponding
argument shall be a pointer to a signed or unsigned integer.

Lo Matches a long signed or unsigned octal integer. The corresponding
argument shall be a pointer to a long signed or unsigned integer.

x or X Matches a hexadecimal integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall
be a pointer to a long signed or unsigned integer.

i Matches a signed or unsigned integer. The corresponding argument shall
be a pointer to a signed or unsigned integer.

Li Matches a long signed or unsigned integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

f,g or e Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

[Matches a non-empty sequence of characters from a set of expected
characters. The sequence of characters included in the set are made up
of all character following the left bracket ([) up to the matching right
bracket (]). Unless the first character after the left bracket is a #, in which
case the set of characters contain all characters that do not appear
between the brackets. If a - character is in the set and is not the first or
second, where the first is a *, nor the last character, then the set
includes all characters from the character before the - to the character
after the -.

For example, %[a-z] would include all characters from a to z in the set
and %]["a-z] would exclude all characters from a to z from the set. The
corresponding argument shall be a pointer to the initial character of an
array long enough to accept the sequence and a terminating null
character, which will be added automatically.

283

Availability:
All Devices

Requires:

#USE RS232

Examples:

Built-in Functions

Assigns the number of characters read thus far by the call to scanf() to
the corresponding argument. The corresponding argument shall be a
pointer to an unsigned integer.

An optional assignment-suppressing character (*) can be used after the
format specifier to indicate that the conversion specification is to be
done, but not saved into a corresponding variable. In this case, no
corresponding argument variable should be passed to the scanf()
function.

A string composed of ordinary non-white space characters is executed by
reading the next character of the string. If one of the inputted characters
differs from the string, the function fails and exits. If a white-space
character precedes the ordinary non-white space characters, then white-
space characters are first read in until a non-white space character is
read.

White-space characters are skipped, except for the conversion specifiers
[, c or n, unless a white-space character precedes the [or ¢ specifiers.

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%$u%s%1d", &énumber, name, &time))
printf"\r\nName: %s, Number: %u, Time: %1d",name,number, time

See Also:

RS232 1/0 Overview, getc(), putc(), printf()

get adc ports()

Syntax:

value = get_adc_ports();

284

Built-in Functions

Parameters:

Returns:
A 32-bit int

Function:
Returns a value that can be passed to setup_adc_ports() to setup the analog pins.

Availability:
Devices with an Analog-to-Digital (ADC) module.

Requires:

Examples:
adc_pins = get adc ports();

See Also:
read adc(), setup _adc(mode), setup adc ports(), set adc channel(), ADC

get capture()

Syntax:
value = get_capture(x)

Parameters:
x defines which ccp module to read from

Returns:
A 16-bit timer value

Function:
This function obtains the last capture time from the indicated CCP module.

Availability:
Only available on devices with Input Capture modules

Requires:

Example Files:
ex_ccpmp.c

285

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:

setup_ccpx()

pcp] get capture()

Syntax:
value = get_capture(x, wait)

Parameters:
x defines which input capture result buffer module to read from

wait signifies if the compiler should read the oldest result in the buffer or the next result to
enter the buffer

Returns:
A 16-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next
result to be sent to the buffer is returned. If wait is false, the default setting, the first value
currently in the buffer is returned. However, the buffer will only hold four results while
waiting for them to be read, so if read isn't being called for every capture event, when
wait is false, the buffer will fill with old capture values and any new results will be lost.

Availability:
Only available on devices with Input Capture modules

Requires:

Examples:
setup_timer3 (TMR INTERNAL | TMR DIV BY 8);
setup capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {
timerValue = get capture(2, TRUE);
printf (“Capture 2 occurred at: %LU”, timerValue);

}

See Also:
setup_capture(), setup_compare(), Input Capture Overview

286

Built-in Functions

get _capture32 ccpl() get capture ccpl()
get capture ccp?2() get capture ccp3() get capture ccp4()
get capture ccp5()

Syntax:
value=get_capture_ccpx(wait);

Parameters:
wait -signifies if the compiler should read the oldest result in the buffer or the next result
in the buffer or the next result to enter the buffer

Returns:
valuel6 -a 16-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next
result to be sent, the buffer is returned. If wait is false, the default setting, the first value
currently in the buffer is return. However, the buffer will only hold four results while
waiting for them to be read. If read is not being called for every capture event, when wait
is false, the buffer will fill with old capture values and any new result will be lost.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned intl6 value;

setup ccpl (CCP_CAPTURE FE);

while (TRUE) {
value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: $LU", value);

}

See Also:
set_ pwmX_duty(), setup_ccpX(), set_ccpX compare_time(), set_timer _ccpX(),
set timer _period ccpX(), get_timer_ccpx(), get_capture32 ccpX()

287

Built-in Functions

pcp]_get capture32 ccpl() get capture32 ccp2()
get capture32 ccp3() get capture32 ccp4()
get capture32 ccp5()

Syntax:
value=get_capture32_ccpx(wait);

Parameters:
wait -signifies if the compiler should read the oldest result in the buffer or the next result
in the buffer or the next result to enter the buffer

Returns:
value32 -a 32-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next
result to be sent, the buffer is returned. If wait is false, the default setting, the first value
currently in the buffer is return. However, the buffer will only hold two results while
waiting for them to be read. If read is not being called for every capture event, when wait
is false, the buffer will fill with old capture values and any new result will be lost.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned int32 value;

setup_ccpl (CCP_CAPTURE FE|CCP_TIMER 32 BIT);

while (TRUE) {
value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: $LU", value);

}

See Also:
set_ pwmX_duty(), setup_ccpX(), set_ccpX compare_time(), set_timer _ccpX(),
set_timer_period ccpX(), get timer _ccpx(), get _capture ccpX()

288

Built-in Functions

get capture event()

Syntax:
result = get_capture_event([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE CAPTURE

Returns:
TRUE if a capture event occurred, FALSE otherwise

Function:
To determine if a capture event occurred.

Availability:
All Devices

Requires:
#USE CAPTURE

Examples:
#USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)
if(get_capture_event())
result = get_capture_time()

See Also:
#use capture, get capture time()

get capture time()

Syntax:
result = get_capture_time([stream])

Parameters:
stream — optional parameter specifying the stream defined in #USE CAPTURE

Returns:
An int16 value representing the last capture time

Function:
To get the last capture time.

Availability:
All Devices

289

Built-in Functions

Requires:
#USE CAPTURE

Examples:
#USE CAPTURE (INPUT=PIN_C2 , CAPTURE _RISING, TIMER=1, FASTEST)
result = get capture time();

See Also:
#use capture, get _capture event()

ipco] get capture32()

Syntax:
result = get_capture32(x,[wait])

Parameters:
x is 1-16 and defines which input capture result buffer modules to read from.

wait is an optional parameter specifying if the compiler should read the oldest result in
the bugger or the next result to enter the buffer

Returns:
A 32-bit timer value

Function:

If wait is true, the current capture values in the result buffer are cleared, and the next
result to be sent to the buffer is returned. If wait is false, the default setting, the first
value currently in the buffer is returned. However, the buffer will only hold four results
while waiting for them to be read, so if get_capture32 is not being called for every capture
event. When wait is false, the buffer will fill with old capture values and any new results
will be lost.

Availability:
Only devices with a 32-bit Input Capture module

Requires:

Examples:
setup timer2 (TMR INTERNAL | TMR DIV BY 1 | TMR 32 BIT);
setup capture(l,CAPTURE FE | CAPTURE TIMER2 | CAPTURE 32 BIT);
while (TRUE) {

290

Built-in Functions

timerValue=get capture32(1l,TRUE);
printf ("Capture 1 occurred at: $LU", timerValue);

}

See Also:
setup_capture(), setup _compare(), get_capture(), Input Capture Overview

get hspwm capture()

Syntax:
result=get_hspwm_ capture(unit);

Parameters:
unit - The High Speed PWM unit to set

Returns:
Unsigned in16 value representing the capture PWM time base value.

Function:
Gets the captured PWM time base value from the leading edge detection on the current-
limit input.

Availability:

Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCXXX,

and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
result=get hspwm capture(l);

See Also:

setup _hspwm unit(), set hspwm phase(), set hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm trigger(), set_hspwm _override(),

setup _hspwm _chop clock(), setup _hspwm unit_chop clock()

setup _hspwm(), setup _hspwm_secondary()

get hspwm feedback()

Syntax:
result = get_hspwm_feedback();

291

Built-in Functions

Parameters:

Returns:
A 15-bit pseudorandom value.

Function:
To read the Linear Feedback Shirt register from the High-Speed PWM (HSPWM)
peripheral.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
unsigned intl6é value;
value = get hspwm feedback();

See Also:

setup _hspwm(), setup_hspwm_event output X(), setup _hspwm logic x(),

setup _hspwm_ unit(),

setup _hspwm_blanking(), setup _hspwm event(), setup hspwm fault(),

setup _hspwm_current_limit(),

setup _hspwm feed forward(), setup hspwn sync(), set _hspwm scaling(),
set_hspwm overrride(), set_hspwm_phase(), set_hspwm _duty(), set_hspwm _period(),
set_hspwm duty adjustment(), set hspwm trigger X(), get hspwm capture(),

get _hspwm_status(), hspwm _trigger pwm(),

hspwm_stop _pwm(), hspwm _do_capture(), hspwm update()

get hspwm status()

Syntax:
result = get_hspwm_status(unit);

Parameters:
unit - The PWM unit to get the status for.

292

Built-in Functions

Returns:

A 16-bit value indicating the status of the specified PWM unit. See the device's header
file for the defines that can be and'ed with return value to determine if the corresponding
status bits are set.

Function:
To read the Linear Feedback Shirt register from the High-Speed PWM (HSPWM)
peripheral.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
unsigned intl6 status;
status = get hspwm status(1);

See Also:

setup _hspwm(), setup _hspwm event output x(), setup _hspwm logic x(),

setup _hspwm_ unit(),

setup _hspwm_blanking(), setup _hspwm event(), setup hspwm fault(),

setup _hspwm_current_limit(),

setup _hspwm feed forward(), setup hspwn sync(), set _hspwm scaling(),
set_hspwm overrride(), set hspwm_phase(), set_hspwm duty(), set hspwm period(),
set_hspwm_duty adjustment(), set_hspwm trigger x(), get _hspwm feedback(),

get _hspwm _capture(), hspwm _trigger _pwm(),

hspwm_stop _pwm(), hspwm_do_capture(), hspwm update()

get motor pwm count()

Syntax:
Datal6 = get_motor_pwm_count(pwm);

Parameters:
pwm- Defines the pwm module used

Returns:
16 bits of data

Function:
Returns the PWM count of the motor control unit

293

Built-in Functions

Availability:
Devices that have the motor control PWM unit

Requires:

Examples:
Datal6 = get motor pmw count (1)

See Also:
setup_motor pwm(), set_motor_unit(), set motor pwm_event(), set motor pwm_duty()

get nco accumulator()

Syntax:
value =get_nco_accumulator();

Parameters:

Returns:
Current value of accumulator

Function:
Returns the PWM count of the motor control unit

Availability:
Devices that have a NCO module

Requires:

Examples:
value=get nco_ accumulator();

See Also:
setup_nco(), set nco_inc_value(), get nco_inc_value()

294

Built-in Functions

get nco inc value()

Syntax:
value =get_nco_inc_value();

Parameters:

Returns:
Current value set in increment registers

Function:
Returns the PWM count of the motor control unit

Availability:
Devices that have the motor control PWM unit

Requires:

Examples:
Datal6 = get motor pmw count (1)

See Also:
setup_nco(), set _nco _inc_value(), get nco_accumulator()

get ticks()

Syntax:
value = get_ticks([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE TIMER

Returns:
value — a 8, 16 or 32 bit integer. (int8, int16 or int32)
lpcp] Value — a 8, 16, 32 or 64 bit integer. (int8, int16, int32 or int64)

Function:
Returns the current tick value of the tick timer. The size returned depends on the size of
the tick timer.

Availability:
All Devices

295

Built-in Functions

Requires:
#USE TIMER(options)

Examples:
#USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 current tick;

current tick = get ticks();

}

See Also:
#USE TIMER, set _ticks()

get timerA()

Syntax:
value=get_timerA();

Parameters:

Returns:
The current value of the timer as an int8

Function:
Returns the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability:
This function is only available on devices with Timer A hardware

Requires:

Examples:
set timerA(0);
while (timerA < 200);

See Also:
set_timerA(), setup_timer_A(), TimerA Overview

296

Built-in Functions

get timerB()

Syntax:
value=get_timerB();

Parameters:

Returns:
The current value of the timer as an int8

Function:
Returns the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability:
This function is only available on devices with Timer B hardware

Requires:

Examples:
set _timerB(0);
while (timerB < 200) ;

See Also:
set_timerB(), setup_timer_B(), TimerB Overview

get timerx()

Syntax:
value=get_timerO() Same as: value=get_rtcc()
value=get_timerl()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer10()
value=get_timer12()
lpcp] Value=get_timer1()

297

Built-in Functions

pcp] Value=get_timer2()
pep] Value=get_timer3()
pcp] Value=get_timer4()
ipcp] Value=get_timer5()
ipcp] Value=get_timer6()
ipcp] Value=get_timer7()
ipcp] value=get_timer8()
[pcp] Value=get_timer9()

Parameters:

Returns:

Timers 1, 3, 5 and 7 return a 16 bit int.

Timers 2 ,4, 6, 8, 10 and 12 return an 8 bit int.

Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX where it returns a 16 bit
int.

irep] The current value of the timer as an int16

Function:

Returns the count value of a real time clock/counter. RTCC and Timer0 are the same. All
timers count up. When a timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...)

rco] Retrieves the value of the timer, specified by X (which may be 1-9)

Availability:

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices

Timer 3, 5 and 7 - Some PIC18 and Enhanced PIC16 devices
Timer 4,6,8,10 and 12- Some PIC18 and Enhanced PIC16 devices
irep; This function is available on all devices that have a valid timerX

Requires:

Examples:
set timer0(0);
while (get timerO() < 200) ;
if(get_timerZ() % 0xAQ == HALF_WAVE_PERIOD)
output toggle (PIN BO);

Example Files:
ex_stwt.c

298

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
set_timerx(), TimerO Overview , Timerl Overview , Timer2 Overview , Timer5 Overview
pep] Timer Overview , setup timerX(), get timerXY(), set_timerX(), set_timerXY()

get timerxy()

Syntax:

value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Parameters:
Void

Returns:
The current value of the 32 bit timer as an int32

Function:
Retrieves the 32 bit value of the timers X and Y, specified by XY (which may be 23, 45,
67 and 89)

Availability:

This function is available on all devices that have a valid 32 bit enabled timers. Timers 2
&3,4&5,6 &7 and8 &9 may be used. The target device must have one of these timer
sets. The target timers must be enabled as 32 bit.

Requires:

Examples:
if(getitimer23 () > TRIGGER TIME)
ExecuteEvent () ;

Example Files:
ex_stwt.c

See Also:
Timer Overview, setup timerX(), get timerXY(), set_timerX(), set_timerXY()

299

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

get timer ccpl() get timer ccp2() get timer ccp3()
get timer ccp4() get timer ccp5()
Syntax:

value32=get_timer_ccpx();
valuel6=get_timer_ccpx(which);

Parameters:
which - when in 16-bit mode determines which timer value to read. 0 reads the lower
timer value (CCPXTMRL), and 1 reads the upper timer value (CCPXTMRH)

Returns:
value32 - the 32-bit timer value.

valuel6- the 16-bit timer value

Function:
This function gets the timer values for the CCP module

Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:
unsigned int32 value32;
unsigned int32 valuel5;

value32=get timer ccpx(//get the 32 bit timer value

)
valuel6=get timer ccpx(0); //get the 16 bit timer value
from
//lower timer
valuel6=get timer ccpx(1l); //get the 16 bit timer value
from

//upper timer

See Also:
set pwmX_duty(), setup ccpX(), set_ccpX compare time(), set timer_ccpX(),
set_timer_period ccpX(), get _capture ccpX(), get captures32 ccpX()

300

Built-in Functions

get tris x()

Syntax:

value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K();
value = get_tris_L();

Parameters:

Returns:
int16, the value of TRIS register

Function:
Returns the value of the TRIS register of port A, B, C, D, E, F, G, H, J, Kor L.

Availability:
All Devices

Requires:

Examples:
tris a = GET TRIS A()

See Also:
input(), output low(), output high()

get wdt()

Syntax:
value = get_wdt();

Parameters:

301

Built-in Functions

Returns:
An 8-bit int

Function:
Returns the current watchdog timer value.

Availability:
Devices with a Windowed Watchdog Timer.

Requires:

Examples:

int8 count;
count = get wdt();

See Also:
setup_wdt(), restart wdt(), WDT or Watch Dog Timer

getenv()

Syntax:
value = getenv (cstring);

Parameters:
cstring - is a constant string with a recognized keyword

Returns:
A constant number, a constant string or 0

Function:

This function obtains information about the execution environment. The following are
recognized keywords. This function returns a constant 0O if the keyword is not
understood.

FUSE_SET:fffff Returns 1 if fuse fffff is enabled
FUSE_VALID:fffff Returns 1 if fuse fffff is valid
INT:iiiii Returns 1 if the interrupt iiiii is valid
ID Returns the device ID (set by #ID)

302

Built-in Functions

DEVICE Returns the device name string (like "PIC16C74")
CLOCK Returns the MPU FOSC
VERSION Returns the compiler version as a float

VERSION_STRING

Returns the compiler version as a string

PROGRAM_MEMORY

Returns the size of memory for code (in words)

STACK

Returns the stack size

SCRATCH

Returns the start of the compiler scratch area

DATA_EEPROM

Returns the number of bytes of data EEPROM

EEPROM_ADDRESS

Returns the address of the start of EEPROM. O if
not supported by the device.

READ_PROGRAM

Returns a 1 if the code memory can be read

ADC_CHANNELS

Returns the number of A/D channels

ADC_RESOLUTION

Returns the number of bits returned from
READ_ADC()

ICD Returns a 1 if this is being compiled for a ICD
SPI Returns a 1 if the device has SPI

USB Returns a 1 if the device has USB

CAN Returns a 1 if the device has CAN
I2C_SLAVE Returns a 1 if the device has 12C slave H/W
[2C_MASTER Returns a 1 if the device has I12C master H/W
PSP Returns a 1 if the device has PSP

COMP Returns a 1 if the device has a comparator

303

Built-in Functions

VREF Returns a 1 if the device has a voltage reference
LCD Returns a 1 if the device has direct LCD H/W
UART Returns the number of H/W UARTSs

AUART Returns 1 if the device has an ADV UART
CCPx Returns a 1 if the device has CCP number x
TIMERX Returns a 1 if the device has TIMER number x

FLASH_WRITE_SIZE

Smallest number of bytes that can be written to
FLASH

FLASH_ERASE_SIZE

Smallest number of bytes that can be erased in
FLASH

BYTES_PER_ADDRESS

Returns the number of bytes at an address location

BITS_PER_INSTRUCTION

Returns the size of an instruction in bits

RAM

Returns the number of RAM bytes available for
your device.

SFR:name

Returns the address of the specified special file
register. The output format can be used with the
preprocessor command #bit. name must match
SFR denomination of your target PIC (example:
STATUS, INTCON, TXREG, RCREG, etc)

BIT:name

Returns the bit address of the specified special file
register bit. The output format will be in
“address:bit”, which can be used with the
preprocessor command #byte. name must match
SFR.bit denomination of your target PIC (example:
C, Z, GIE, TMROIF, etc)

SFR_VALID:name

Returns TRUE if the specified special file register
name is valid and exists for your target PIC
(example: getenv("SFR_VALID:INTCON"))

304

Built-in Functions

BIT_VALID:name Returns TRUE if the specified special file register
bit is valid and exists for your target PIC (example:
getenv("BIT_VALID:TMROIF"))

PIN:PB Returns 1 if PB is a valid /O PIN (like A2)

UARTx_RX Returns UARTXPin (like PINXC7)

UARTX_TX Returns UARTXPin (like PINXC6)

SPIx_DI Returns SPIxDI Pin

SPIXDO Returns SPIXDO Pin

SPIXCLK Returns SPIXCLK Pin

ETHERNET Returns 1 if device supports Ethernet

QEI Returns 1 if device has QEI

DAC Returns 1 if device has a D/A Converter

DSP Returns 1 if device supports DSP instructions

DCI Returns 1 if device has a DCI module

DMA Returns 1 if device supports DMA

CRC Returns 1 if device has a CRC module

CWG Returns 1 if device has a CWG module

NCO Returns 1 if device has a NCO module

CLC Returns 1 if device has a CLC module

DSM Returns 1 if device has a DSM module

OPAMP Returns 1 if device has op amps

RTC Returns 1 if device has a Real Time Clock

305

Built-in Functions

CAP_SENSE

Returns 1 if device has a CSM cap sense module
and 2 if it has a CTMU module

EXTERNAL_MEMORY

Returns 1 if device supports external program
memory

INSTRUCTION_CLOCK

Returns the MPU instruction clock

ENH16 Returns 1 for Enhanced 16 devices

rco] ENH24 Returns 2 for Enhanced 24 devices

ircoj IC Returns number of Input Capture units device has

ircp] ICx Returns TRUE if ICx is on this part

rco] OC Returns number of Output Compare units device
has

ipcp] OCx Returns TRUE if OCx is on this part

rco] RAM_START

Returns the starting address of the first general
purpose RAM location

pcp] PSV

Returns TRUE if program space visibility (PSV) is
enabled. If PSV is enabled, data in program
memory (‘const char * or 'rom char *') can be
assigned to a regular RAM pointer (‘char *') and a
regular RAM pointer can dereference data from
program memory or RAM.

ireo] MIN_FLASH_WRITE

The smallest number of bytes that can be written to
FLASH using the write_program_memory()
function. The write_program_memory() function
can only write multiples of this size to the FLASH.
Additionally, the start address passed to the
write_program_memory() function must be
multiples of this value divided by two. For
example, if MIN_FLASH_WRITE is 4, then start
address can be 0x0000, 0x0002, 0x004, etc.

Availability:
All Devices

306

Built-in Functions

Requires:

Examples:
#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old
#ENDIF

for (i=0;i<getenv ("DATA EEPROM");i++)
write eeprom (i, 0);

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS")
#bit carry flag=GETENV (“BIT:C”)

goto address()

Syntax:
goto_address(location);

Parameters:
location - is a ROM address, 16 or 32 bit int

Returns:

Function:

This function jumps to the address specified by location. Jumps outside of the current
function should be done only with great caution. This is not a normally used function
except in very special situations.

Availability:
All Devices

Requires:

Examples:
#define LOAD REQUEST PIN Bl
#define LOADER 0x1f00

307

Built-in Functions

if (input (LOAD_REQUEST))
goto_ address (LOADER) ;

Example Files:
setjimp.h

See Also:

label address()

high speed adc done()

Syntax:
value = high_speed_adc_done([pair]);

Parameters:
pair — Optional parameter that determines which ADC pair's ready flag to check. If not
used all ready flags are checked

Returns:

An intl6. If pairis used 1 will be return if ADC is done with conversion, O will be return if
still busy. If pair is not used, it will return a bit map of which conversion are ready to be
read.

For example a return value of 0x0041 means that ADC pair 6, AN12 and AN13, and ADC
pair 0O, ANO and AN1, are ready to be read.

Function:
Can be polled to determine if the ADC has valid data to be read.

Availability:
Only on dsPIC33FJIxxGSxxx devices

Requires:

Examples:
intl6 result[2]
setup _high speed adc pair(l, INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc(ADC_CLOCK DIV 4);

read high speed adc(l, ADC START ONLY);

while(!highispeediadcidone(l));
read high speed adc(l, ADC READ ONLY, result);

308

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

printf (“"AN2 value = %LX, AN3 value =
$LX\n\r”,result[0], result[1l])

See Also:
setup_high speed adc(), setup _high speed adc pair(), read high speed adc()

hspwm do capture()

Syntax:
hspwm_do_capture(unit);

Parameters:
unit - The PWM unit to capture.

Returns:

Function:

To initiate a software capture for the specified PWM unit of the High-Speed PWM
(HSPWM) peripheral. Once a capture event has occurred, no further captures will occur
until it is cleared. The capture event is cleared when read with the get_hspwm_capture()
function.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
hspwm _do_capture (1) ; //initiate a software capture for PWM unit 1

See Also:

setup _hspwm(), setup_hspwm event output X(), setup _hspwm logic_ x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm_event(),

setup _hspwm_fault(), setup _hspwm _current_limit(), setup_hspwm feed forward(),
setup _hspwn _sync(), set_hspwm scaling(), set_hspwm _overrride(),

set_hspwm phase(), set_hspwm duty(), set_hspwm period(),

set_hspwm duty adjustment(), set_hspwm trigger x(), get hspwm feedback(),

get _hspwm capture(), get _hspwm_status(), hspwm _trigger pwm(), hspwm _stop pwm(),
hspwm_update()

309

Built-in Functions

hspwm stop pwm()

Syntax:
hspwm_stop_pwm(unit);

Parameters:
unit - The PWM unit to stop.

Returns:

Function:
To stop a PWM cycle for the specified unit of the High-Speed PWM (HSPWM) peripheral.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
hspwm stop pwm(1); // stop a PWM cycle for PWM unit 1

See Also:

setup _hspwm(), setup _hspwm event output X(), setup _hspwm logic_x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm_event(),

setup _hspwm_fault(), setup_hspwm_current_limit(), setup_hspwm feed forward(),
setup_hspwn_sync(), set_hspwm_scaling(), set_hspwm_overrride(),
set_hspwm_phase(), set_hspwm_duty(), set_hspwm_period(),

set_hspwm_duty adjustment(), set_hspwm trigger x(), get _hspwm feedback(),
get_hspwm capture(), get _hspwm_status(), hspwm _trigger pwm(),

hspwm do_capture(), hspwm update()

hspwm trigger pwm()

Syntax:
hspwm_trigger_pwm(unit);

Parameters:
unit - The PWM unit to trigger.

Returns:

310

Built-in Functions

Function:
To trigger a PWM cycle for the specified unit of the High-Speed PWM (HSPWM)
peripheral.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
hspwm trigger pwm(1l)); //trigger a software capture for PWM unit 1

See Also:

setup _hspwm(), setup_hspwm_event output X(), setup _hspwm logic x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm event(),

setup _hspwm fault(), setup _hspwm current limit(), setup _hspwm feed forward(),
setup _hspwn_sync(), set_hspwm_scaling(), set_hspwm_overrride(),
set_hspwm_phase(), set_hspwm_duty(), set hspwm period(),

set_hspwm duty adjustment(), set _hspwm trigger x(), get hspwm_ feedback(),

get _hspwm capture(), get _hspwm_status(), hspwm_stop _pwm(), hspwm_ do_capture(),
hspwm _update()

hspwm update()

Syntax:
hspwm_update(unit);

Parameters:
unit - The PWM unit to update.

Returns:

Function:

To request an update of the PWM data registers for the specified PWM unit of the High-

Speed PWM (HSPWM) peripheral. When an update is pending, the UPDATE status bits
will be set and the get_hspwm_status() function can be used to determine if an update is
pending.

311

Built-in Functions

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
hspwm_update (1) ; // request an update for PWM unit 1

See Also:

setup _hspwm(), setup _hspwm_event output Xx(), setup _hspwm logic x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm event(),

setup _hspwm_fault(), setup _hspwm current limit(), setup _hspwm feed forward(),
setup _hspwn sync(), set hspwm scaling(), set hspwm overrride(),
set_hspwm_phase(), set_hspwm_duty(), set_hspwm_period(),

set_hspwm_duty adjustment(), set_hspwm trigger x(), get _hspwm feedback(),

get hspwm capture(), get hspwm status(), hspwm trigger pwm(), hspwm_stop pwm(),
hspwm _do_capture(),

12c_init()
Syntax:
i2c_init([stream],baud);

Parameters:
stream — optional parameter specifying the stream defined in #USE 12C.

baud - if baud is 0, 12C peripheral will be disable. If baud is 1, I2C peripheral is initialized and
enabled with baud rate specified in #USE 12C directive. If baud is > 1 then 12C peripheral is
initialized and enabled to specified baud rate

Returns:

Function:
To initialize 12C peripheral at run time to specified baud rate.

Availability:
All Devices

Requires:
#USE 12C

312

Built-in Functions

Examples:

#USE I2C(MASTER,I2C1, FAST,NOINIT)
i2c_init (TRUE) ; //initialize and enable
I2C peripheral

//to baud rate specified
in //#USE I2C
i2c_init (500000) ; //initialize and enable
I2C peripheral

//to a baud rate of 500
KBPS

See Also:
i2c_poll(), i2c_speed(), i2c_slaveaddr(), i2c_isr_state() ,i2c_write(),
i2c_read(), use i2c(),i2¢c()

i2c isr state()

Syntax:
state = i2c_isr_state();
state = i2c_isr_state(stream);

Parameters:

Returns:
state - is an 8 bit int

0 - Address match received with R/W bit clear, perform i2c_read() to read the 12C
address.

1-0x7F - Master has written data; i2c_read() will immediately return the data

0x80 - Address match received with R/W bit set; perform i2c_read() to read the 12C
address, and use i2c_write() to pre-load the transmit buffer for the next transaction (next
I2C read performed by master will read this byte).

0x81-0xFF - Transmission completed and acknowledged; respond with i2c_write() to
pre-load the transmit buffer for the next transition (the next 12C read performed by master
will read this byte).

Function:
Returns the state of I2C communications in 12C slave mode after an SSP interrupt. The
return value increments with each byte received or sent.

313

Built-in Functions

If Ox00 or 0x80 is returned, an i2C_read() needs to be performed to read the 12C
address that was sent (it will match the address configured by #USE 12C so this value
can be ignored)

Availability:
Devices with built-in 12C
Requires:
#USE I12C
Examples:
#INT SSP
void i2c isr() {
state = i2c_isr state();
if (state==) i2c_read();
iQ@c_read();
if (state == 0x80)

i2c_read(2);
if (state >= 0x80)

i2c_write(send buffer[state - 0x80]);
else if(state > 0)
rcv_buffer[state - 1] = i2c_read();

}

Example Files:
ex_slave.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_write, i2c_read, #USE 12C, [12C
Overview

i2c_poll()

Syntax:
i2c_poll()
i2c_poll(stream)

Parameters:
stream (optional)- specify the stream defined in #USE 12C

Returns:
1 (TRUE) or 0 (FALSE)

314

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:

The i2c_poll() function should only be used when the built-in SSP is used. This function
returns TRUE if the hardware has a received byte in the buffer. When a TRUE is
returned, a call to i2c_read() will immediately return the byte that was received.

Availability:
Devices with built-in 12C

Requires:
#USE 12C

Examples:
if (i2c-poll())
buffer [index]=i2c-read();//read data
}

See Also:
i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

i2c_read()

Syntax:

data = i2c_read();

data = i2c_read(ack);

data = i2c_read(stream, ack);

Parameters:
ack -Optional, defaults to 1
0 indicates do not ack
1 indicates to ack
2 slave only, indicates to not release clock at end of read. Use when i2c_isr_state()
returns 0x80

stream - specify the stream defined in #USE 12C

Returns:
data - 8 bit int

Function:

Reads a byte over the 12C interface. In master mode this function will generate the clock
and in slave mode it will wait for the clock. There is no timeout for the slave, use

315

Built-in Functions

i2c_poll() to prevent a lockup. Use restart_wdt() in the #USE 12C to strobe the watch-
dog timer in the slave mode while waiting.

Availability:
All devices

Requires:
#USE 12C

Examples:
i2c_start();
i2c write(0Oxal);
datal = i2c_read(TRUE);
data2 = i2c_read(FALSE) ;
i2c_stop ()

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, #USE
12C, 12C Overview

i2c slaveaddr()

Syntax:
i2c_slaveaddr(addr);
i2c_slaveaddr(stream, addr)

Parameters:
addr = 8 bit device address

stream(optional) - specifies the stream used in #USE 12C

Returns:

Function:
This functions sets the address for the 12C interface in slave mode.

Availability:
Devices with built-in 12C

316

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Requires:
#USE 12C

Examples:
i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08)

Example Files:
ex_slave.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read, #USE 12C, 12C
Overview

i2c_speed()
Syntax:

i2c_speed (baud)
i2c_speed (stream, baud)

Parameters:
baud is the number of bits per second.

stream - specify the stream defined in #USE 12C

Returns:

Function:
This function changes the 12c bit rate at run time. This only works if the hardware 12C
module is being used.

Availability:
All Devices

Requires:
#USE 12C

Examples:
i2C_Speed (400000);
putc (13)

Example Files:
ex_tgetc.c

317

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE [2C,
12C Overview

i2c_start()

Syntax:

i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

Parameters:
stream - specify the stream defined in #USE 12C
restart:- 2 - new restart is forced instead of start
1 - normal start is performed
0 - (or not specified) — restart is done only if the compiler last encountered a
i2c_start() and no i2c_stop()

Returns:
Undefined

Function:

Issues a start condition when in the [2C master mode. After the start condition the clock is
held low until i2c_write() is called. If another i2c_start() is called in the same function
before an i2c_stop() is called, then a special restart condition is issued.

Note that specific I12C protocol depends on the slave device. The i2c_start() function will
now accept an optional parameter. If 1 the compiler assumes the bus is in the stopped
state. If 2 the compiler treats this i2c_start() as a restart. If no parameter is passed a 2 is
used only if the compiler compiled a i2c_start() last with no i2c_stop() since.

Availability:
All Devices

Requires:
#USE I12C

Examples:
i2c_start();
i2c write (0xa0); // Device address
i2c _write(address); // Data to device
i2¢_start(); // Restart
i2c write(0Oxal); // to change data direction

318

Built-in Functions

data=i2c_read(0); // Now read from slave
i2c_stop()

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c _isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

i2c_stop()

Syntax:
i2c_stop()
i2c_stop(stream)

Parameters:
stream - (optional) specify the stream defined in #USE 12C

Returns:
Undefined

Function:
Issues a stop condition when in the [2C master mode.

Availability:

All Devices

Requires:

#USE 12C

Examples:
i2¢ start(); // Start condition
i2c write (0xa0); // Device address
i2c _write(5); // Device command
i2c write(12); // Device data
i2¢c stop(); // Stop condition

Example Files:
ex_extee.c with 2416.c

319

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

i2c transfer()

Syntax:
i2c_transfer([stream], address, wData, wCount, [rData], [rCount]);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

address - The device address to transfer data to and from.

wData - Pointer to data to transfer to device.

wCount - Number of bytes to transfer to device.

rData - Optional, pointer to save transferred data from device to.

Rcount - Optional, number of byte to transfer from device. Must be used if rData is used.

Returns:

0 for ACK and 1 for NACK. When only writing data, it returns whether the Slave device
ACK'd or NACK'd the write command or last byte transmitted; whichever occurred last. If
writing and reading data, if the Slave NACK'd one of the bytes that were transmitted, it
returns a NACK, otherwise it returns whether the Slave ACK'd or NACK'd the read
command.

Function:

Transfer data to and from an 12C device. This function does the 12C start, restart, write,
read and stop operations. If the Slave device NACK's the write command, read
command or one of the write bytes, the function will exit at that point even if it did not
finish writing and/or reading all the data.

Availability:
All devices when #USE 12C is setup for Master Mode.

Requires:

Examples:
unsigned int8 rAddress=0;

320

Built-in Functions

unsigned int8 rDatall6];
intl ack;

ack = i2c transfer (0xAQ, &rAddress, 1, rData, 16);

if (ack==0)

printf ("\r\nData transferred successfully");
else

printf ("\r\nData transferred unsuccessfully");

Example File:
ex_i2c_master_hw_k42.c

See Also:
i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c isr_state(), i2c_write(), i2¢c_read(),
i2c_transfer out(), i2c_transfer in(), #USE 12C, 12C Overview

i2c transfer in()

Syntax:
i2c_transfer_in([stream], address, rData, rCount);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

address - The device address to transfer data from.
rData - Optional, pointer to save transferred data from device to.
Rcount - Number of byte to transfer from device.

Returns:
0 for ACK and 1 for NACK from the read command.

Function:

Transfer data to and from an 12C device. This function does the 12C start, restart, write,
read and stop operations. If the Slave NACK'd the read command, the function will exit
without reading any data.

Availability:
All devices when #USE 12C is setup for Master Mode.

321

Built-in Functions

Requires:

Examples:
unsigned int8 rDatal[l6];
intl ack;

ack=i2c transfer in(0xA0,rData,16);

if (ack==0)

printf ("Data read successfully");
else

printf ("data not read");

Example File:
ex_i2c_master_hw_k42.c

See Also:
i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c_isr_state(), i2c_write(), i2¢c_read(),
i2c_transfer out(), i2c _transfer(), #USE [2C, I12C Overview

i2c transfer out()

Syntax:
i2c_transfer_out([stream], address, wData, wCount);

Parameters:
stream - Optional, the stream defined in #USE 12C to use.

address - The device address to transfer data to.

wData - Pointer to data to transfer to device.

wcount - Number of bytes to transfer to device.

Returns:

0 for ACK and 1 for NACK of either the write command or last byte transmitted,
whichever occurred last.

Function:

Transfer data to and from an 12C device. This function does the 12C start, restart, write,
read and stop operations. If the Slave device NACK's the write command or one of the

write bytes the function will exit at that point, even if it did not finish writing all the data.

322

Built-in Functions

Availability:
All devices when #USE 12C is setup for Master Mode.

Requires:

Examples:
unsigned int8wDatall6];
intl ack;

ack = i2c_transfer out (0xAO,wData, 16);
if (ack==0)

printf ("\r\nData transferred successfully");
else

printf ("\r\nData transferred unsuccessfully");

Example File:
ex_i2c_master_hw_k42.c

See Also:
i2c_poll(), i2c_speed(), i2c_stop(), i2c_slaveaddr(), i2c_isr_state(), i2c_write(), i2¢c_read(),
i2c_transfer _in(), i2c_transfer(), #USE _12C, 12C Overview

12c_write()
Syntax:

i2c_write (data)
i2c_write (stream, data)

Parameters:
data is an 8 bit int

stream - specify the stream defined in #USE 12C
Returns:
This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in Multi_Master Mode.
This does not return an ACK if using i2c in slave mode.

323

Built-in Functions

Function:

Sends a single byte over the 12C interface. In master mode this function will generate a
clock with the data and in slave mode it will wait for the clock from the master. No
automatic time-out is provided in this function. This function returns the ACK bit. The
LSB of the first write after a start determines the direction of data transfer (0 is master to
slave). Note that specific 12C protocol depends on the slave device.

Availability:
All Devices

Requires:
#USE I12C

Examples:
long cmd;

i2c¢c_start(); // Start condition
i2c_write (0xa0); // Device address
i2c_write (cmd); // Low byte of command
i2c_write (cmd>>8) ; // High byte of command
i2c_stop(); // Stop condition

Example Files:
ex_extee.c with 2416.c

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_read, #USE 12C,
12C Overview

input()
Syntax:
value = input (pin)

Parameters:

Pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43.

irep] Pin to read. Pins are defined in the devices .h file. The actual value is a bit

address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #define PIN_A3 5651.

324

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the
FAST 10 mode is set on port A. note that doing I/O with a variable instead of a constant
will take much longer time.

Returns:
0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function:

This function returns the state of the indicated pin. The method of I/O is dependent on the
last USE *_|O directive. By default with standard 1/0 before the input is done the data
direction is set to input.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
while (!input (PIN B1l)); // waits for Bl to go high

if(input (PIN_AOQ))
printf ("A0 is now high\r\n");

intl6é i=PIN Bl;
while(!1); //waits for Bl to go high

Example Files:
ex_pulse.c

See Also:
input_x(), output low(), output high(), #USE FIXED 10, #USE FAST 10, #USE
STANDARD 10, General Purpose I/0

input change x()

Syntax:

value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();

325

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_k();
value = input_change_I();

Parameters:

Returns:
An 8-bit or 16-bit int representing the changes on the port

Function:

This function reads the level of the pins on the port and compares them to the results the
last time the input_change_x() function was called. A 1 is returned if the value has
changed, O if the value is unchanged.

Availability:
All Devices

Requires:

Examples:
pin check = input change b();

See Also:
input(), input_x(), output_x(), #USE FIXED 10, #USE FAST |0, #USE
STANDARD 10, General Purpose I/0

input state()

Syntax:
value = input_state(pin)

Parameters:

pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43.

326

Built-in Functions

[pcp] pin to read. Pins are defined in the devices .h file. The actual value is a bit address.
For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is
defined as follows: #define PIN_A3 5651.

Returns:
Bit specifying whether pin is high or low. A 1 indicates the pin is high and a O indicates it
is low.

Function:
This function reads the level of a pin without changing the direction of the pin as INPUT()
does.

Availability:
All Devices

Requires:

Examples:
level = input state(pin A3);
printf ("level: %d",level)

See Also:
input(), set_tris_x(), output low(), output_high(), General Purpose 1/O

input x()

Syntax:

value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()
value = input_I()

Parameters:

327

Built-in Functions

Returns:
An 8 bit int representing the port input data.
ieep] An 16 bit int representing the port input data.

Function:

Inputs an entire byte from a port. The direction register is changed in accordance with the
last specified #USE *_10 directive. By default with standard 1/0 before the input is done
the data direction is set to input.

eep] Inputs an entire word from a port. The direction register is changed in accordance
with the last specified #USE *_|O directive. By default with standard I/O before the input
is done the data direction is set to input.

Availability:
All Devices

Requires:

Examples:
data = input Db();

See Also:
input(), output x(), #USE FIXED 10, #USE FAST 10, #USE STANDARD 10

interrupt active()

Syntax:
interrupt_active (interrupt)

Parameters:
Interrupt — constant specifying the interrupt

Returns:
Boolean value

Function:

The function checks the interrupt flag of the specified interrupt and returns true in case
the flag is set.

Availability:

Devices with Interrupts

328

Built-in Functions

Requires:
Should have a #INT_xxxx, Constants are defined in the devices .h file

Examples:
interrupt active (INT TIMERO) ;
interrupt active (INT TIMERI1);

See Also:
Interrupts Overview, clear interrupt, enable interrupts(), disable interrupts(), #INT,
disable_interrupts() , #INT

interrupt enabled()

This function checks the interrupt enabled flag for the specified interrupt and returns
TRUE if set.

Syntax:
interrupt_enabled(interrupt);

Parameters:
interrupt- constant specifying the interrupt

Returns:
Boolean value

Function:
The function checks the interrupt enable flag of the specified interrupt and returns TRUE
when set.

Availability:
Devices with Interrupts

Requires:
Interrupt Constants are defined in the devices .h file

Examples:
if (interrupt enabled (INT RDA))
disable interrupt (INT RDA);

See Also:

Interrupts Overview, clear _interrupt, interrupt _active(), disable interrupts(), #INT, #INT

329

Built-in Functions

isalnum(char) isalpha(char) iscntrl(x) isdigit(char)
isgraph(x) islower(char) isspace(char) isupper(char)
isxdigit(char) isprint(x) ispunct(x)

Syntax:

value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters:
datac - is a 8 bit character

Returns:
0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does match the
criteria.

Function:
Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis 0..9,'A'.."Z', or'a'..'z'
isalpha(x) Xis'A'..'Z' or'a'..'z
isdigit(x) Xis'0..'9'
islower(x) Xis'a..'z
isupper(x) Xis'A'..'Z
isspace(x) Xis a space
isxdigit(x) Xis'0..'9', 'A"..'F', or 'a’..f

iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or
number
Availability:
All Devices

330

Built-in Functions

Requires:
#INCLUDE <ctype.h>

Examples:
char id[20];

if (isalpha (id[0])) {

valid id=TRUE;

for (i=1;i<strlen (id) ;i++)

valid id=valid id && isalnum(id[i]);
} else

valid id=FALSE;

Example Files:
ex_str.c

See Also:

isamong()

iIsamong()

Syntax:
result = isamong (value, cstring)

Parameters:
value - is a character
cstring - is a constant sting

Returns:
0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Function:
Returns TRUE if a character is one of the characters in a constant string.

Availability:
All devices

Requires:

Examples:
char x="x";

331

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions
if (isamong (x,"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is valid");

Example Files:
#INCLUDE <ctype.h>

See Also:
isalnum(), isalpha(), isdiqit(), isspace(), islower(), isupper(), isxdigit()

itoa

Syntax:

string = itoa(i32value, i8base, string)

[pcp] String = itoa(i48value, i8base, string)
[pcp] String = itoa(i64value, i8base, string)

Parameters:

i32value is a 32 bit int

rep) i48value is a 48 bit int
pcp] i64value is a 64 bit int

i8base is a 8 bit int
string is a pointer to a null terminated string of characters

Returns:
string is a pointer to a null terminated string of characters

Function:

Converts the signed int32 to a string according to the provided base and returns the
converted value if any. If the result cannot be represented, the function will return 0.
rep] Converts the signed int48, or a int64 to a string according to the provided base and
returns the converted value if any. If the result cannot be represented, the function will
return O.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

332

Built-in Functions

Examples:
int32 x=1234;
char string[5];

itoa(x,10, string); // string is now “1234”

jump to isr()

Syntax:
jump_to_isr (address)

Parameters:
address is a valid program memory address

Returns:

Function:

The jump_to_isr function is used when the location of the interrupt service routines are
not at the default location in program memory. When an interrupt occurs, program
execution will jump to the default location and then jump to the specified address.

Availability:
All Devices

Requires:

Examples:
int global
void global isr(void) {
jump to isr(isr_ address);

}

Example Files:
ex_bootloader.c

See Also:
#BUILD

kbhit()

Syntax:
value = kbhit()

333

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

value = kbhit (stream)

Parameters:
stream - is the stream id assigned to an available RS232 port. If the stream parameter is
not included, the function uses the primary stream used by getc().

Returns:
0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a
character is ready for getc()

Function:

If the RS232 is under software control this function returns TRUE if the start bit of a
character is being sent on the RS232 RCV pin. If the RS232 is hardware this function
returns TRUE if a character has been received and is waiting in the hardware buffer for
getc() to read. This function may be used to poll for data without stopping and waiting for
the data to appear. Note that in the case of software RS232 this function should be called
at least 10 times the bit rate to ensure incoming data is not lost.

Availability:
All Devices

Requires:
#USE RS232

Examples:
char timed getc () {

long timeout;

timeout error=FALSE;

timeout=0;

while (!'kbhit () && (++timeout<50000)) // 1/2 second
delay us(10);

if (kbhit ())
return (getc());

else {
timeout error=TRUE;
return (0) ;

}

Example Files:
ex_tgetc.c

See Also:
getc(), #USE RS232, RS232 /0O Overview

334

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

label address()

Syntax:
value = label_address(label);

Parameters:
label - is a C label anywhere in the function

Returns:
16 bit int in PCB and PCM and 32 bit int for PCH
ipep) 32 bit int for PCD

Function:
This function obtains the address in ROM of the next instruction after the label. This is not
a normally used function except in very special situations.

Availability:
All Devices

Requires:

Examples:

start:
a = (b+c)<k2;
end:
printf ("It takes %$1lu ROM locations.\r\n",
label address(end)-label address(start))

Example Files:
setimp.h

See Also:

goto_address()

labs()

Syntax:
result = labs (value)

Parameters:

value is a 16 bit signed long int
lpcp] Value is a 32, 48 or 64 bit signed long int

335

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
A 16 bit signed long int
erep] A signed long int of type value

Function:
Computes the absolute value of a long integer.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

See Also:

abs()

lcd contrast()

Syntax:
Icd_contrast(contrast)

Parameters:
contrast is used to set the internal contrast control resistance ladder

Returns:
Undefined

Function:

This function controls the contrast of the LCD segments with a value passed in between
0 and 7. A value of 0 will produce the minimum contrast, 7 will produce the maximum
contrast.

Availability:
Only on select devices with built-in LCD Driver Module
Requires:
Examples:
lcd contrast(0); // Minimum Contrast

336

Built-in Functions

lcd contrast(7); // Maximum Contrast

See Also:
Ilcd load(), lcd symbol(), setup lcd(), Internal LCD Overview

lcd load()

Syntax:
Icd_load (buffer_pointer, offset, length)

Parameters:

buffer_pointer - points to the user data to send to the LCD, offset is the offset into the
LCD segment memory to write the data.

length - is the number of bytes to transfer to the LCD segment memory.

Returns:
Undefined

Function:

This function will load length bytes from buffer_pointer into the LCD segment memory
beginning at offset. The lcd_symbol() function provides as easier way to write data to
the segment memory.

Availability:
Only on select devices with built-in LCD Driver Module

Requires:
Constants are defined in the devices *.h file.

Examples:
lcd load(buffer, 0, 16);

Example Files:
ex_92lcd.c

See Also:
Icd_symbol(), setup lcd(), lcd _contrast(), Internal LCD Overview

lcd symbol()

Syntax:
lcd_symbol (symbol, bX_addr);

337

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
symbol is a 8 bit or 16 bit constant.

bX addr is a bit address representing the segment location to be used for bit X of the
specified symbol.
1-16 segments could be specified

Returns:
Undefined

Function:

This function loads the bits for the symbol into the segment data registers for the LCD
with each bit address specified. If bit X in symbol is set, the segment at bX_addr is set,
otherwise it is cleared. The bX_addr is a bit address into the LCD RAM.

Availability:
Only on select devices with built-in LCD Driver Module

Requires:
Constants are defined in the devices *.h file.

Examples:
byte CONST DIGIT MAP[10] = {0OxFC, 0x60, OxDA, 0xF2, O0x66, 0xB6, OxBE, O0xEOQ,
OxFE, OxE6};

#define DIGITL coM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18

for(i = 0; 1 <= 9; i++) {
lcd symbol(DIGIT MAP[i], DIGITL);
delay ms(1000);

}

Example Files:
ex_92lcd.c

See Also:
setup_lcd(), lcd load(), lcd _contrast(), Internal LCD Overview

Idexp()

Syntax:
result= Idexp (value, exp);

338

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
value is float
pep] Value any float type

exp is a signed int

Returns:
Result is a float with value result times 2 raised to power exp.
rep] Result will have a precision equal to value

Function:
The Idexp() function multiplies a floating-point number by an integral power of 2.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
float result;
result=ldexp (.5,0); // result is .5

See Also:
frexp(), exp(), log(), log10(), modf()

load slave program()

Syntax:
load_slave_program(address, instructions);

Parameters:
address - The address in the Master's program memory that the Slave program is stored
at. Because of how the data is stored and written the address must be a multiple of 4.

Instructions - The number of instructions to copy from the Master's Flash to the Slave's
PRAM, because of how the data is written the number of instructions must be a multiple
of 2.

Returns:

339

Built-in Functions

Function:
Copy the Slave program stored in the Master's Flash to the Slave's PRAM.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
load slave program(0x10000, 512);

See Also:
verify slave program()

log()

Syntax:
result= Idexp (value, exp);

Parameters:
value is float
pep] Value any float type

exp is a signed int

Returns:
Result is a float with value result times 2 raised to power exp
ireo] Result will have a precision equal to value

Function:

Computes the natural logarithm of the float x. If the argument is less than or equal to zero
or too large, the behavior is undefined.

Note on error handling: "errno.h" is included then the domain and range errors are stored
in the errno variable. The user can check the errno to see if an error has occurred and
print the error using the perror function.

Domain error occurs in the following cases: log: when the argument is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

340

Built-in Functions

Examples:
Inx = log(x);

See Also:
10910(), exp(), pow()

log10()

Syntax:
result= log10 (value)

Parameters:
value is float
pcp] Value any float type

exp is a signed int

Returns:
Result is a float with value result times 2 raised to power exp
ireo] Result will have a precision equal to value

Function:

Computes the natural logarithm of the float x. If the argument is less than or equal to zero
or too large, the behavior is undefined.

Note on error handling: "errno.h" is included then the domain and range errors are stored
in the errno variable. The user can check the errno to see if an error has occurred and
print the error using the perror function.

Domain error occurs in the following cases: 1og10: when the argument is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
db = loglO(read adc()*(5.0/255))*10;

See Also:
loa(), exp(), pow()

341

Built-in Functions

longimp()
Syntax:
longjmp (env, val)

Parameters:
env - The data object that will be restored by this function

val -: The value that the function setjmp will return. If val is O then the function setjmp will
return 1 instead

Returns:
After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp function had just returned the value specified by val

Function:
Performs the non-local transfer of control

Availability:
All Devices

Requires:
#INCLUDE <setjmp.h>

Examples:
longjmp (jmpbuf, 1);

See Also:

setimp()

make8()

Syntax:
i8 = MAKES8(var, offset);

Parameters:
var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3

Returns:
8 bit integer

Function:
Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & 0xff) except it is
done with a single byte move

342

Built-in Functions

Availability:
All Devices

Requires:

Examples:
int32 x;
int y;

y = make8(x,3); // Gets MSB of x

See Also:
makel6(), make32()

makel6()

Syntax:
i16 = MAKE16(varhigh, varlow)

Parameters:
varhigh and varlow are 8 bit integer

Returns:
16 bit integer

Function:

Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32 bits only
the Isb is used. Same as: i16 = (int16)(varhigh&0xff)*0x100+(varlow&0xff) except it is
done with two byte moves

Availability:
All Devices

Requires:

Examples:
long x;
int hi,lo;

X = makelo6 (hi, lo

343

Built-in Functions

Example Files:
[tc1298.c

See Also:
make8(), make32()

make32()

Syntax:
i32 = MAKE32(varl, var2, var3, var4)

Parameters:
varl-4 are a 8 or 16 bit integers
var2-4 are optional

Returns:
32 bit integer

Function:

Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note that the
number of parameters may be 1 to 4. The msb is first. If the total bits provided is less
than 32 then zeros are added at the msb

Availability:
All Devices

Requires:

Examples:
int32 x;
int y;
long z;
X = make32(1,2,3,4); // x is 0x01020304
y=0x12;
z=0x4321;
x = make32(y,z); // x is 0x00124321

x = make32(y,vy,z); // x is 0x12124321

Example Files:
ex_fregc.c

See Also:
make8(), makel6()

344

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

malloc()

Syntax:
ptr=malloc(size)

Parameters:
size - is an integer representing the number of byes to be allocated

Returns:
A pointer to the allocated memory, if any. Returns null otherwise

Function:
The malloc function allocates space for an object whose size is specified by size and
whose value is indeterminate

Availability:
All Devices

Requires:
#INCLUDE <stdlibm.h>

Examples:
int * iptr;
iptr=malloc (10); // iptr will point to a block of memory of
10 bytes

See Also:
realloc(), free(), calloc()

memcpy() memmove()

Syntax:
memcpy (destination, source, n)
memmove(destination, source, n)

Parameters:

destination - is a pointer to the destination memory
source - is a pointer to the source memory

n - is the number of bytes to transfer

Returns:
Undefined

345

Built-in Functions

Function:

Copies n bytes from source to destination in RAM. Be aware that array hames are
pointers where other variable names and structure names are not (and therefore need a
& before them).

memmove() performs a safe copy (overlapping objects does not cause a problem).
Copying takes place as if the n characters from the source are first copied into a
temporary array of n characters that does not overlap the destination and source objects.
Then the n characters from the temporary array are copied to destination.

Availability:
All Devices

Requires:

Examples:
memcpy (&structh, &structB, sizeof (structd));
memcpy (arrayA, arrayB, sizeof (arravyhd));
memcpy (&structA, &databyte, 1);

char a[20]="hello";
memmove (a,a+2,5) ; // a 1is now "llo

See Also:
strcpy(), memset()

memset()

Syntax:
memset (destination, value, n)

Parameters:

destination - is a pointer to memory.
value - is a 8 bit int

n -is a 16 bitint

PCB and PCM parts n can only be 1-255.

Returns:
Undefined

346

Built-in Functions

Function:

Sets n number of bytes, starting at destination, to value. Be aware that array names are
pointers where other variable names and structure names are not (and therefore need a
& before them).

Availability:
All Devices

Requires:

Examples:
memset (arrayA, 0, sizeof (arrayh)):;
memset (arrayB, '?', sizeof (arrayB));
memset (&structhA, OxFF, sizeof (structh))

See Also:

memcpy()

modf()

Syntax:
result= modf (value, & integral)

Parameters:

value is a float

rco] value is any float type
integral is a float

rco] integral is any float type

Returns:
Result is a float
rep] Result is a float with precision equal to value

Function:

The modf() function breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument. It stores the integral part as a float in the
object integral.

Availability:
All Devices

347

Built-in Functions

Requires:
#INCLUDE <math.h>

Examples:
float result, integral;
result=modf (123.987, &integral) ; // result is .987 and integral is
123.000

msi fifo status()

Syntax:
Status = smi_fifo_status();

Parameters:

Returns:

An intl6 value indicating the status of the MSI FIFO registers. See the device's header
file for defines that can be and'ed with return value to determine if the corresponding
status bits are set.

Function:
Read the status bits from the FIFO Control/Status register from the Master Slave
Interface (MSI) peripheral.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intl6 Status;
unsigned intlé Value;

Status = msi fifo status();

if ((Status & MSI_READ FIFO EMPTY) == FALSE)
Value = smi_read fifo();
See Also:

msi_write_mailbox(), msi_read mailbox(), msi_status(), msi_read_fifo(),
msi_mailbox_status(),
msi_write_fifo(), setup_msi()

348

Built-in Functions

msi mailbox status()

Syntax:
Status = msi_mailbox_status();

Parameters:

Returns:

An int8 value indicating whether the mailbox associated with corresponding handshake
protocol has data to be read. Bit 0 is for handshake protocol A, Bit 1 is for handshake
protocol B, etc. If the corresponding bit is a 1, then mailbox registers have been written,
i.e. has data to be read. If bitis a 0, then mailbox registers have not been written, i.e. has
no data to be read, or the corresponding handshake protocol block is disabled.

Function:

Read the MSI1IMBSX, master core, or SILMBSX, slave core, register from the Master
Slave Interface (MSI) peripheral. This is used to determine if mailboxes associated with
the corresponding handshake protocols have data to red or can be written.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intl6é Status;

unsigned intlé Value;
Status = msi mailbox status():

if (bit_tst(Status, 0) ==1) //check if protocol A has data to read
Value = msi_read mailbox(0);

See Also:
msi_write_mailbox(), msi_read mailbox(), msi_status(), msi_read_fifo(),
msi_write_fifo(), setup_msi(), msi_fifo status()

msi read fifo()

Syntax:
Success = msi_read_fifo(*data);

349

Built-in Functions

Parameters:
Data - pointer to int16 variable to return read data to.

Returns:
True if data was successfully read from FIFO, FALSE is data was not read.

Function:

Read from the read FIFO register from the Master Slave Interface (MSI) peripheral.
Additionally, the function checks the corresponding Read FIFO Empty Status bit from the
FIFO Control/Status Register and only performs the read it, the Status bit indicates that
the read FIFO buffer is not empty. This is to keep a read underflow from happening.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intl6 Status;
unsigned intlé6 Value;

Status = msi_read fifo(&Value):

See Also:
msi_write_mailbox(), msi_read mailbox(), msi_status(), msi_fifo_status(),
msi_write fifo(), setup msi()

msi read mailbox()

Syntax:
Value=msi_read_mailbox(mailbox);

Parameters:
mailbox - The mailbox register to read from can be a value from 0 to 15.

Returns:
An intl16 value read from the corresponding mailbox register.

Function:
Read one of the mailbox registers from the Master Slave Interface (MSI) peripheral. The
direction of the mailbox registers depends how the associated configuration bits are set.

350

Built-in Functions

This function should only be used to read mailbox registers that are set as read registers
for the corresponding core.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intlé6 Value;

unsigned int8 Mailbox = 0;

Value = msi read mailbox (Mailbox) ; //reads mailbox 0 register

See Also:
msi_write _mailbox(), msi_status(), msi_read fifo(), msi_mailbox status(),
msi_write fifo(), setup _msi(), msi_fifo_status()

msi status()

Syntax:
Status=msi_status();

Parameters:

Returns:
The status of the MSI peripheral. See the device's header file for the defines that can be
and'd with return value to determine if the corresponding status bits are set.

Function:
Read the MSI1STAT, master core, or SILSTAT, slave core, register from the Master
Slave Interface (MSI) peripheral.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intl6 Status;

Status=msi_status();

351

Built-in Functions

if ((Status & MSI_SLAVE IN RESET) == MSI SLAVE IN RESET)
setup msi (MSI SLAVE ENABLE) ;

See Also:
msi_write_mailbox(), msi_read mailbox(), msi_read fifo(), msi_mailbox status(),
msi_write_fifo(), setup_msi(), msi_fifo status()

msi write fifo()

Syntax:
Success = msi_write_fifo(data);

Parameters:
Data - int16 data to write to FIFO register..

Returns:
True if data was successfully written to FIFO, FALSE is data was not written..

Function:

Write data to the write FIFO register from the Master Slave Interface (MSI) peripheral.
Additionally, the function checks the corresponding Write FIFO Empty Status bit from the
FIFO Control/Status Register and only performs the write, the Status bit indicates that the
write FIFO buffer is not full. This is to keep a write underflow from happening.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
unsigned intl6é Status;
unsigned intl6 Value = 0x1122;

Status = msi write fifo(Value):

See Also:
msi_write_mailbox(), msi_read mailbox(), msi_status(), msi_read_fifo(),
msi_fifo_status(),

setup_msi()

352

Built-in Functions

msi write mailbox()

Syntax:
msi_write_mailbox(mailbox, data);

Parameters:
mailbox - The mailbox register to write from can be a value from 0 to 15.

data - An int16 value to write to the mailbox register.

Returns:

Function:

Write to one of the mailbox registers from the Master Slave Interface (MSI) peripheral.
The direction of the mailbox registers depends how the associated configuration bits are
set. This function should only be used to read mailbox registers that are set as write
registers for the corresponding core.

Availability:
Only available on Dual Core devices.
Requires:
Examples:
unsigned intl6 Value = 0x1122;
unsigned int8 Mailbox = 0;
msi write mailbox (Mailbox, Value); //writes mailbox 0 register
See Also:

msi_read_mailbox(), msi_mailbox_status(), msi_read_fifo(),msi_write_fifo(),
msi_fifo_status(), setup_msi()

mul()

Syntax:
prod=_mul(vall, val2);

Parameters:
vall and val2 are both 8-bit or 16-bit integers
irep) Vall and val2 are both 8-bit, 16-bit, or 48-bit integers

353

Built-in Functions

Returns:
A 16-bit integer if both parameters are 8-hit integers, or a 32-bit integer if both

parameters are 16-bit integers.
[PCD]

vall val2 prod
8 8 16
16* 16 32
32* 32 64
48* 48 64**
* or less

** large numbers will overflow with wrong results

Function:
Performs an optimized multiplication. By accepting a different type than it returns, this
function avoids the overhead of converting the parameters to a larger type.

Availability:
All Devices

Requires:

Examples:
int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000

nargs()

Syntax:
void foo(char * str, int count, ...)

Parameters:
The function can take variable parameters. The user can use stdarg library to create
functions that take variable parameters.

Returns:
Function dependent

Function:
The stdarg library allows the user to create functions that supports variable arguments.

354

Built-in Functions

The function that will accept a variable number of arguments must have at least one
actual, known parameters, and it may have more. The number of arguments is often
passed to the function in one of its actual parameters. If the variable-length argument list
can involve more that one type, the type information is generally passed as well. Before
processing can begin, the function creates a special argument pointer of type va_list.

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h>

Examples:
int foo(int num, ...)
{
int sum = 0;
int 1i;
va_ list argptr; // create special argument pointer
va_start (argptr,num) ; // initialize argptr

for (i=0; i<num; 1i++)

sum = sum + va arg(argptr, int) ;
va_end(argptr); // end variable processing
return sum;

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

See Also:
va_start(), va _end(), va arg()

offset() offsetofbit()

Syntax:
value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters:
stype - is a structure type name.
field - is a field from the above structure

Returns:
8 bit byte

355

Built-in Functions

Function:
These functions return an offset into a structure for the indicated field.
offsetof() returns the offset in bytes and offsetofbit returns the offset in bits.

Availability:
All Devices

Requires:
#INCLUDE <stddef.h>

Examples:
struct time structure ({
int hour, min, sec;
int zone : 4;
intl daylight savings;

}
x = offsetof (time structure, sec); // x will be 2
x = offsetofbit (time structure, sec); // x will be 16
x = offsetof (time structure,
daylight savings); // x will be 3
x = offsetofbit (time structure,
daylight savings); // x will be 28total =

foo(2,4,6,9,10,2);
}

outputx()

Syntax:

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)
output_| (value)

Parameters:

value - is a 8 bit int
eep] Value - is a 16 bit int

356

Built-in Functions

Returns:
Undefined

Function:

Output an entire byte to a port. The direction register is changed in accordance with the
last specified #USE *_10 directive.

rep] Output an entire word to a port. The direction register is changed in accordance with
the last specified #USE *_10 directive.

Availability:
All Device that include all ports (A-E)

Requires:

Examples:
OUTPUT B (0x£f0);

Example Files:
ex_patg.c

See Also:
input(), output_low(), output_high(), output float(), output_bit(), #USE FIXED |0, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output bit()

Syntax:
output_bit (pin, value)

Parameters:

pins - defined in the devices .h file. The actual number is a bit address. For example, port
a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE
PIN_A3 43. The PIN could also be a variable. The variable must have a value equal to
one of the constants (like PIN_A1) to work properly. The tristate register is updated
unless the FAST_|O mode is set on port A. Note that doing I/O with a variable instead of
a constant will take much longer time.

lrcp] pins - defined in the devices .h file. The actual number is a bit address. For example,
port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is defined as
follows: #define PIN_A3 5651.

valueisalorad0.

357

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
Undefined

Function:
Outputs the specified value (0 or 1) to the specified I/O pin. The method of setting the
direction register is determined by the last #USE*_IO directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output bit (PIN BO, 0); // Same as
output low(pin BO);
output bit (PIN BO, input (PIN Bl1)); // Make pin BO the same as
B1

output bit (PIN BO,shift left(&data,l,input (PIN B1l)));// Output
the MSB of data to
// BO and at the same time
// shift Bl into the LSB of
data
intl6é i=PIN BO;
ouput bit (i,shift left(s&data,l,input (PIN Bl))); //same as
above example, but
//uses a variable instead of
a constant

Example Files:
ex_extee.c with 9356.c

See Also:
input(), output_low(), output_high(), output_float(), output_x(), #USE FIXED |0, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output drive()

Syntax:
output_drive(pin)

358

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Parameters:

pins - are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as

follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable must have
a value equal to one of the constants (like PIN_A1) to work properly. The tristate register
is updated unless the FAST_IO mode is set on port A. Note that doing I/0O with a variable
instead of a constant will take much longer time.

[pcp] pins - are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is
defined as follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets the specified pin to the output mode.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output drive (pin A0); // sets pin A0 to output its
value
output bit (pin B0, input (pin A0)) // makes B0 the same as A0
See Also:

input(), output_low(), output_high(), output_bit(), output_x(), output_float()

output float()

Syntax:
output_float(pin)

Parameters:

pins - are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as

follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable must have
a value equal to one of the constants (like PIN_A1) to work properly. The tristate register
is updated unless the FAST_IO mode is set on port A. Note that doing I/O with a variable
instead of a constant will take much longer time.

359

Built-in Functions

[pcp] pins - are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651. This is
defined as follows: #DEFINE PIN_A3 5651.

Returns:
Undefined

Function:
Sets the specified pin to the input mode. This will allow the pin to float high to represent a
high on an open collector type of connection.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
if((data & 0x80)==0)
output low(pin AO);
else
output float (pin AO0);

See Also:
input(), output low(), output high(), output bit(), output x(), output_drive(), #USE
FIXED 10, #USE FAST 10, #USE STANDARD 10, General Purpose I/O

output high()

Syntax:
output_high(pin)

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit

address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable
must have a value equal to one of the constants (like PIN_A1) to work properly. The
tristate register is updated unless the FAST 10 mode is set on port A. Note that doing
I/O with a variable instead of a constant will take much longer time.

[pcp] pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

360

Built-in Functions

Returns:
Undefined

Function:
Sets a given pin to the high state. The method of I/0 used is dependent on the last USE
* |0 directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output high(PIN AQ);

Intl6 i=PIN Al;
output low (PIN Al);

Example Files:
ex_sgw.c

See Also:
input(), output_low(), output float(), output bit(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose /O

output low()

Syntax:
output_low(pin)

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit

address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable
must have a value equal to one of the constants (like PIN_A1) to work properly. The
tristate register is updated unless the FAST 10 mode is set on port A. Note that doing
I/O with a variable instead of a constant will take much longer time.

[pcp] pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

361

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
Undefined

Function:
Sets a given pin to the ground state. The method of I/O used is dependent on the last
USE * IO directive.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output low (PIN AO);

Int16i=PIN Al;
output low (PIN Al);

Example Files:
ex_sgw.c

See Also:
input(), output_high(), output float(), output bit(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output toggle()

Syntax:
output_toggle(pin)

Parameters:

pin to write to. Pins are defined in the devices .h file. The actual value is a bit

address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is
defined as follows: #DEFINE PIN_A3 43. The PIN could also be a variable. The variable
must have a value equal to one of the constants (like PIN_A1) to work properly. The
tristate register is updated unless the FAST 10 mode is set on port A. Note that doing
I/O with a variable instead of a constant will take much longer time.

[pcp] Pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651. This is defined as follows: #DEFINE PIN_A3 5651.

362

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
Undefined

Function:
Toggles the high/low state of the specified pin.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
output toggle (PIN B4);

See Also:
input(), output high(), output low(), output_bit(), output x()

perror()

Syntax:
perror(string);

Parameters:
string is a constant string or array of characters (null terminated)

Returns:

Function:
This function prints out to STDERR the supplied string and a description of the last
system error (usually a math error.

Availability:
All Devices

Requires:
#USE RS232, #INCLUDE <errno.h>, #INCLUDE<stdio.h>

Examples:
x = sin(y);

if (errno!=0)

363

perror ("Problem in find area");

See Also:
RS232 1/0 Overview

pid busy()

Syntax:
result = pid_busy();

Parameters:

Function:

TRUE if PID module is busy or FALSE is PID module is not busy

Availability:
All Devices with a PID Module

Requires:

Examples:
pid get result (PID START ONLY, ADCResult);
while (pid busy());
pid get result (PID READ ONLY, &PIDResult);

See Also:
setup_pid(), pid write(), pid_get result(), pid _read()

pid get result()

Syntax:

pid_get_result(set_point, input, &output);
pid_get_result(mode, set_point, input);
pid_get_result(mode, &output)
pid_get_result(mode, set_point, input, &output);

364

Built-in Functions

Built-in Functions

Parameters:
mode - constant parameter specifying whether to only start the calculation, only read the
result, or start the calculation and read the result. The options are defined in the device's
header file as:

pd_start_read

pid_read_only

pid_start_only

set_point -a 16-bit variable or constant representing the set point of the control system,
the value the input from the control system is compared against to determine the error in
the system.

input - a 16-bit variable or constant representing the input from the control system.

output - a structure that the output of the PID module will be saved to. Either pass the
address of the structure as the parameter, or a pointer to the structure as the parameter.

Returns:

Function:

To pass the set point and input from the control system to the PID module, start the PID
calculation and get the result of the PID calculation. The PID calculation starts,
automatically when the input is written to the PID module's input registers.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid get result (SetPoint, ADCResult, &PIDOutput); //Start
and Read
pid get result (PID_START ONLY, SetPoint, ADCResult); //Start
Only
pid get result (PID READ ONLY, &PIDResult); //Read
Only

See Also:
setup_pid(), pid_read(), pid_write(), pid _busy()

365

Built-in Functions

pid read()

Syntax:
pid_read(register, &output);

Parameters:
register- constant specifying which PID registers to read. The registers that can be
written are defined in the device's header file as:
- pid_addr_accumulator

pid_addr_output

pid_addr_z1

pid_addr_z2

pid_addr_k1

pid_addr_k2

pid_addr_k3

output -a 16-bit variable, 32-bit variable or structure that specified PID registers value will
be saved to. The size depends on the registers that are being read. Either pass the
address of the variable or structure as the parameter, or a pointer to the variable or
structure as the parameter.

Returns:

Function:

To read the current value of the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish
calculation before reading the specified register.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid read(PID ADDR Zl, &value zl);

See Also:
setup_pid(), pid_write(), pid_get result(), pid_busy()

366

Built-in Functions

pid write()

Syntax:
pid_write(register, &output);

Parameters:
register- constant specifying which PID registers to read. The registers that can be
written are defined in the device's header file as:

pid_addr_accumulator

pid_addr_output

pid_addr_z1

pid_addr_z2

pid_addr_k1

pid_addr_k2

pid_addr_k3

output -a 16-bit variable, 32-bit variable or structure that specified PID registers value will
be saved to. The size depends on the registers that are being read. Either pass the
address of the variable or structure as the parameter, or a pointer to the variable or
structure as the parameter.

Returns:

Function:

To write a new value for the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish
the calculation before writing the specified register.

Availability:
All Devices with a PID Module

Requires:
Constants are defined in the device's .h file

Examples:
pid write(PID ADDR Zl, é&value zl);

See Also:
setup pid(), pid_read(), pid get result(), pid _busy()

367

Built-in Functions

pin select()

Syntax:
pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters:

peripheral_pin — a constant string specifying which peripheral pin to map the specified
pin to. Refer to #pin_select for all available strings. Using “NULL” for the peripheral_pin
parameter will unassign the output peripheral pin that is currently assigned to the pin
passed for the pin parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's header file for pin
defines. If the peripheral_pin parameter is an input, passing FALSE for the pin parameter
will unassign the pin that is currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock sequence before
writing the RPINRx or RPORX register register determined by peripheral_pin and pin
options. Default is TRUE if not specified. The unlock sequence must be performed to
allow writes to the RPINRx and RPORX registers. This option allows calling pin_select()
multiple times without performing an unlock sequence each time.

lock — optional parameter specifying whether to perform a lock sequence after writing the
RPINRx or RPORX registers. Default is TRUE if not specified. Although not necessary it
is a good idea to lock the RPINRx and RPORX registers from writes after all pins have
been mapped. This option allows calling pin_select() multiple times without performing
a lock sequence each time.

Returns:

Availability:
On device with remappable peripheral pins.

Requires:
Pin defines in device's header file.

Examples:
pin_select (“U2TX”,PIN BO); //Maps PIN BO to U2TX
peripheral pin,
//performs unlock and lock
sequences.

pin select (“U2TX”,PIN BO,TRUE,FALSE); //Maps PIN B0 to U2TX
peripheral pin

368

sequence.

pin select (“U2RX”,PIN B1,FALSE, TRUE) ;

peripheral pin
sequence.

See Also:
#pin_select

pll locked()

Syntax:
result=pll_locked();

Parameters:

Returns:

A short int.

TRUE if the PLL is locked/ready,
FALSE if PLL is not locked/ready

Function:

Built-in Functions

//and performs unlock

//Maps PIN Bl to U2RX

//and performs lock

Allows testing the PLL Ready Flag bit to determined if the PLL is stable and running.

Availability:
All Devices with a Phase Locked Loop (PLL).

Not all devices have a PLL Ready Flag, for those devices the pll_locked() function will

always return TRUE

Requires:

Examples:
while (!pll locked())

See Also:
#use delay

369

Built-in Functions

pmp address(address)

Syntax:
pmp_address (address);

Parameters:
address- The address which is a 16 bit destination address value. This will setup the
address register on the PMP module and is only used in Master mode.

Returns:
Undefined

Function:

Configures the address register of the PMP module with the destination address during
Master mode operation. The address can be either 14, 15 or 16 bits based on the
multiplexing used for the Chip Select Lines 1 and 2.

Availability:
All Devices with a built-in Parallel Port Module

Requires:

Examples:
pmp address (0x2100); // Sets up Address register to
0x2100

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp input full(), psp overflow(), pmp output full(),
pmp_input full),pmp_overflow()

pmp output full() pmp input full() pmp overflow()
pmp error() pmp timeout()

Syntax:

result = pmp_output_full()
result = pmp_input_full()
result = pmp_overflow()
result = pmp_eror()
result = pmp_timeout()

370

Built-in Functions

Parameters:

Returns:
A 0 (FALSE) or 1 (TRUE)

Function:
These functions check the Parallel Port for the indicated conditions and return TRUE or
FALSE.

Availability:
Only available on devices with Parallel Port
Requires:
Examples:

while (pmp_ output full());

pmp data = command;

while (!pmp input full());

if (pmp_overflow())

error = TRUE;
else

data = pmp data

See Also:
setup_pmp(), pmp_write(), pmp_read()

pmp read()

Syntax:

result = pmp_read ();

result = pmp_read8(address);

result = pmp_readl6(address);
pmp_read8(address,pointer,count);
pmp_readl6(address,pointer,count);

Parameters:

address- EPMP only, address in EDS memory that is mapped to address from parallel
port device to read data from or start reading data from. (All address in EDS memory are
word aligned)

pointer- EPMP only, pointer to array to read data to.

371

Built-in Functions

count- EPMP only, number of bytes to read. For pmp_read16() number of bytes must be
even.

Returns:
For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit value. For
pmp_read8(address,pointer,count) and pmp_read16(address,pointer,count) undefined.

Function:

For PMP module, this will read a byte from the next buffer location. For EPMP module,
reads one byte/word or count bytes of data from the address mapped to the EDS
memory location. The address is used in conjunction with the offset address set with the
setup_pmp_cs1() and setup_pmp_cs2() functions to determine which address lines are
high or low during the read.

Availability:
Only available on devices with Parallel Port or an Enhanced Parallel Master Port module.
Requires:
Examples:
result = pmp read(); //PMP reads next byte of data
result = pmp read8 (0x8000); //EPMP reads byte of data from
the
//address mapped to first address
in

//EDS memory.
pmp readl6 (0x8002,ptr,16); //EPMP reads 16 bytes of data and
//returns to array pointed to by

ptr
//starting at address mapped to
address
//0x8002 in EDS memory
See Also:

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output full(),
pmp_input full(),pmp_overflow()

pmp write()

Syntax:
pmp_write (data);

372

Built-in Functions

pmp_write8(address,data);
pmp_write8(address,pointer,data);
pmp_writel6(address,data);
pmp_writel6(address,pointer,data);

Parameters:
data- The byte of data to be written.

address- EPMP only, address in EDS memory that is mapped to address from parallel
port device to write data to or start writing data to. (All addresses in EDS memory are
word aligned)

pointer- EPMP only, pointer to data to be written

count- EPMP only, number of bytes to write. For pmp_write16() number of bytes must
be even.

Returns:
Undefined

Function:

For PMP modules, this will write a byte of data to the next buffer location. For EPMP
modules writes one byte/word or count bytes of data from the address mapped to the
EDS memory location. The address is used in conjunction with the offset address set with
the setup_pmp_cs1() and setup_pmp_cs2() functions to determine which address lines
are high or low during write.

Availability:
Only available on devices with Parallel Port or an Enhanced Parallel Master Port module.
Requires:
Examples:
pmp write(data); //Write the data byte to
//the next buffer location.
pmp write8(0x8000,data); //EPMP writes the data byte to

//the address mapped to the first

//location in EDS memory.
pmp writel6(0x8002,ptr,16); //EPMP writes 16 bytes of data
pointed

//to by ptr starting at address
mapped

//to address 0x8002 in EDS memory.

373

Built-in Functions

See Also:

setup pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(), pmp_output full(),
pmp_input full(), pmp_overflow()

port a current source()

Syntax:
port_a_current_source(mask);

Parameters:
mask - an int8 value indicating which port pins have the weak current source enabled. 1
indicates the weak current source is enabled.

Returns:

Function:
Used to enable and disable the weak current source on port A pins.

Availability:
Devices that have a weak current source on some of the port A pins.
Requires:
Examples:
port a current source (0x0C); //enables weak current source
//on PIN A2 and PIN A3.
See Also:
set tris x(), get trisx(), output x(), input x(), input change x(), port x pullups(),
input(),

input_state(), output_low(), output_high(), output _toggle(), output_bit(), output float(),
output_drive(), General Purpose 1/0O

port x pullups()

Syntax:

port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_ pullups (value)

374

Built-in Functions

port_j_pullups (value)

port_k_ pullups (value)

port | pullups (value)

port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters:
value - is TRUE or FALSE on most parts, some parts that allow pullups to be specified
on individual pins permit an 8 bit int here, one bit for each port pin.

upmask - for ports that permit pullups to be specified on a pin basis. This mask indicates
what pins should have pullups activated. A 1 indicates the pullups is on.

downmask - for ports that permit pulldowns to be specified on a pin basis. This mask
indicates what pins should have pulldowns activated. A 1 indicates the pulldowns is on.

Returns:
Undefined

Function:
Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Availability:
Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS on PCB
parts).

Requires:

Examples:
port a pullups (FALSE) ;

Example Files:
ex_lcdkb.c, kbd.c

See Also:
input(), input_x(), output float()

pow() pwr()

Syntax:
f=pow (x,y)
f=pwr (x,y)

375

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Parameters:
x and y are of type float
pep] X and y are any float type

Returns:
A float
ieeo] A float with precision equal to function parameters x and y.

Function:
Calculates X to the Y power.

Note on error handling: If "errno.h" is included then the domain and range errors are
stored in the errno variable. The user can check the errno to see if an error has occurred
and print the error using the perror function.

Range error occurs in the following case: pow: when the argument X is negative

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
area = pow (size,3.0)

prgx status()

Syntax:

status = prgl_status();
status = prg2_status();
status = prg3_status();
status = prg4_status();

Parameters:

Returns:
An 8-bit value indicating the status of the PRGx module. See the device's header file for
constants that can be returned by function.

Function:
Used to set the PRGx modules.

376

Built-in Functions

Availability:
Devices that have a Programmable Ramp Generator (PRG) module.

Requires:

Examples:

int8 Status;
Status = prgl status();

See Also:

setup_prax()

printf() fprintf()

Syntax:
printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:
String is a constant string or an array of characters null terminated.

C String is a constant string. Note that format specifiers cannot be used in RAM strings.

Values is a list of variables separated by commas, fname is a function name to be used
for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte)

Returns:
Undefined

Function:

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When variables
are used this string must be a constant. The % character is used within the string to
indicate a variable value is to be formatted and output. Longs in the printf may be 16 or
32 bit. A %% will output a single %. Formatting rules for the % follows.

377

Built-in Functions

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT
(the last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how many
characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for floating
point and %w output. t is the type and may be one of the following:

c -- string or character

u --unsigned

d --signed int

Lu -- long unsigned int

Ld -- long signed int

X -- hex int (lower case)

X -- hexint (upper case

Lx -- hex long int (lower case)

LX -- hex long int (upper case)

f --float with truncated decimal

g -- float with rounded decimal

e --float in exponential format

w -- unsigned int with decimal place inserted. Specify two numbers for n.

The first is a total field width. The second is the desired number of decimal
places.

Example Formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 00OFE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.

Availability:

All Devices

378

Built-in Functions

Requires:
#USE RS232 (unless fname is used)

Examples:
byte x,vy,2z;
printf ("HiThere");
printf ("RTCCValue=>%2x\r\n",get rtcc());
printf ("%$2u $X %4X\r\n",x,vy,2z);
printf (LCD_PUTC, "n=%u",n);

Example Files:
ex_admm.c, ex_lcdkb.c

See Also:
atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0 Overview

profileout()

Syntax:
profileout(string);
profileout(string, value);
profileout(value);

Parameters:

string - is any constant string, and value can be any constant or variable integer.

Despite the length of string the user specifies here, the code profile run-time will actually
only send a one or two byte identifier tag to the code profile tool to keep transmission and
execution time to a minimum.

Returns:
Undefined

Function:

Typically the code profiler will log and display function entry and exits, to show the call
sequence and profile the execution time of the functions. By using profileout(), the user
can add any message or display any variable in the code profile tool. Most messages
sent by profileout() are displayed in the 'Data Messages' and 'Call Sequence' screens of
the code profile tool.

If a profileout(string) is used and the first word of string is "START", the code profile tool
will then measure the time it takes until it sees the same profileout(string) where the
"START" is replaced with "STOP". This measurement is then displayed in the 'Statistics'
screen of the code profile tool, using string as the name (without "START" or "STOP")

379

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Availability:
All Devices

Requires:
#use profile() used somewhere in the project source code

Examples:

// send a simple string.
profileout ("This is a text string"); // send a variable with a
string identifier.
profileout ("RemoteSensor=", adc); // Jjust send a variable.
profileout (adc) ; // time how long a block of
code takes to execute.

// this will be displayed
in the 'Statistics'

// of the Code Profile
tool.
profileout ("start my algorithm");

/* code goes here */

profileout ("stop my algorithm")

Example Files:
ex_profile.c

See Also:
#use profile(), #profile, Code Profile Overview

psmc blanking()

Syntax:
psmc_blanking(unit, rising_edge, rise_time, falling_edge, fall_time);

Parameters:
unit - is the PSMC unit number 1-4

rising_edge - are the events that are ignored after the signal activates.
rise_time - is the time in ticks (0-255) that the above events are ignored.
falling_edge - are the events that are ignored after the signal goes inactive.

fall_time - is the time in ticks (0-255) that the above events are ignored.
Events:

380

Built-in Functions

psmc_event_clout
psmc_event_c2out
psmc_event_c3out
psmc_event_c4out
psmc_event_in_pin

Returns:
Undefined

Function:

This function is used when system noise can cause an incorrect trigger from one of the
specified events. This function allows for ignoring these events for a period of time
around either edge of the signal. See setup_psmc() for a definition of a tick.

Pass a 0 or FALSE for the events to disable blanking for an edge.

Availability:
All Devices with PSMC module

Requires:

psmc deadband()

Syntax:
psmc_deadband(unit,rising_edge, falling_edge);

Parameters:
unit - is the PSMC unit number 1-4

rising_edge - is the deadband time in ticks after the signal goes active. If this function is
not called, 0 is used.

falling_edge - is the deadband time in ticks after the signal goes inactive. If this function
is not called, O is used.

Returns:
Undefined

Function:

This function sets the deadband time values. Deadbands are a gap in time where both
sides of a complementary signal are forced to be inactive. The time values are in ticks.
See setup_psmc() for a definition of a tick.

381

Built-in Functions

Availability:
All Devices with PSMC module

Requires:

Examples:
// 5 tick deadband when the signal
goes active.
psmc_deadband (1, 5, 0)

See Also:
setup _psmc(), psmc_sync(), psmc_blanking(), psmc_modulation(), psmc_shutdown(),
psmc_duty(), psmc_freq adjust(), psmc_pins()

psmc duty()

Syntax:
psmc_duty(unit, pins_used, pins_active_low);

Parameters:
unit - is the PSMC unit number 1-4

fall_time - is the time in ticks that the signal goes inactive (after the start of the period)
assuming the event PSMC_EVENT_TIME has been specified in the setup_psmc().

Returns:
Undefined

Function:

This function changes the fall time (within the period) for the active signal. This can be
used to change the duty of the active pulse. Note that the time is NOT a percentage nor
is it the time the signal is active. It is the time from the start of the period that the signal
will go inactive. If the rise_time was set to 0, then this time is the total time the signal will
be active.

Availability:
All Devices with PSMC module

Requires:

382

Built-in Functions

Examples:

// For a 10khz PWM, based on Fosc

divided by 1
// the following sets the duty from
// 0% to 100% baed on the ADC reading

while (TRUE) {

psmc_duty (1, (read adc()*(intl16)10)/25)*
(getenv ("CLOCK") /1000000)) ;
}

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_freq adjust(), psmc_pins()

psmc freq adjust()

Syntax:
psmc_freq_adjust(unit, freq_adjust);

Parameters:
unit - is the PSMC unit number 1-4

freq_adjust - is the time in tick/16 increments to add to the period. The value may be 0-
15.

Returns:
Undefined

Function:
This function adds a fraction of a tick to the period time for some modes of operation.

Availability:
All Devices with PSMC module

Requires:

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_dutyt(), psmc_pins()

383

Built-in Functions

psmc modulation()

Syntax:
psmc_modulation(unit, options);

Parameters:
unit is the PSMC unit number 1-4

Options may be one of the following:
psmc_mod_off
psmc_mod_active
psmc_mod_inactive
psmc_mod_clout
psmc_mod_c2out
psmc_mod_c3out
psmc_mod_c4out
psmc_mod_ccpl
psmc_mod_ccp2
psmc_mod_in_pin

The following may be OR'ed with the above
psmc_mod_invert
psmc_mod_not_bdf
psmc_mod_not_ace

Returns:
Undefined

Function:

This function allows some source to control if the PWM is running or not. The
active/inactive are used for software to control the modulation. The other sources are
hardware controlled modulation. There are also options to invert the inputs, and to ignore
some of the PWM outputs for the purpose of modulation.

Availability:
All Devices with PSMC module

Requires:

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_shutdown(),
psmc_duty(), psmc_freq adjust(), psmc_pins()

384

Built-in Functions

psmc pins()

Syntax:
psmc_pins(unit, pins_used, pins_active_low);

Parameters:
unit - is the PSMC unit number 1-4

used_pins - is the any combination of the following or'ed together:
psmc_A
psmc_B
psmc_C
psmc_D
psmc_E
psmc_F
psmc_on_next_period

If the last constant is used, all the changes made take effect on the next period (as
opposed to immediate)

pins_active_low - is an optional parameter. When used it lists the same pins from
above as the pins that should have an inverted polarity.

Returns:
Undefined

Function:
This function identified the pins allocated to the PSMC unit, the polarity of those pins and
it enables the PSMC unit. The tri-state register for each pin is set to the output state.

Availability:
All Devices with PSMC module

Requires:

Examples:
// Simple PWM, 10khz out on pin CO
assuming a 20mhz crystal
// Duty is initially set to 25%
setup psmc (1, PSMC)SINGLE,
PSMC EVENT TIME | PSMC SOURCE FOSC, us (100,
PSMC EVENT TIME, O,
PSMC EVENT TIME, us(25));

385

Built-in Functions

psmc_pins(l, PSMC A);
}

See Also:
setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freg adjust()

psmc shutdown()

Syntax:
psmc_shutdown(unit, options, source, pins_high);
psmc_shutdown(unit, command);

Parameters:
unit - is the PSMC unit number 1-4

Options may be one of the following:
psmc_shutdown_
psmc_shutdown_normal
psmc_shutdown_auto_restart

command may be one of the following:
psmc_shutdown_restart
psmc_shutdown_force
psmc_shutdown_check

source may be any of the following or'ed together:
psmc_shutdown_clout
psmc_shutdown_c2out
psmc_shutdown_c3out
psmc_shutdown_c4out
psmc_shutdown_in_pin

pins_high is any combination of the following or'ed together:
psmc_A
psmc_B
psmc_C
psmc_D
psmc_E
psmc_F

Returns:
Non-zero if the unit is now in shutdown

386

Built-in Functions

Function:

This function implements a shutdown capability. When any of the listed events activate
the PSMC unit will shutdown and the output pins are driver low unless they are listed in
the pins that will be driven high.

The auto restart option will restart when the condition goes inactive, otherwise a call with
the restart command must be used. Software can force a shutdown with the force
command.

Availability:
All Devices with PSMC module

Requires:

See Also:
setup _psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_duty(), psmc_freg_adjust(), psmc_pins()

psmc sync()

Syntax:
psmc_sync(slave_unit, master_unit, options);

Parameters:
slave_unit is the PSMC unit number 1-4 to be controlled.

master_unit is the PSMC unit number 1-4 to be synchronized to

Options may be:
psmc_source_is_phase
psmc_source_is_period
psmc_source_disconnect

The following may be OR'ed with the above:
psmc_invert_duty
psmc_invert_period

Returns:
Non-zero if the unit is now in shutdown

387

Built-in Functions

Function:
This function allows one PSMC unit (the slave) to be synchronized (the outputs) with
another PSMC unit (the master).

Availability:
All Devices with PSMC module

Requires:

See Also:
setup _psmc(), psmc_deadband(), psmc_sync(), psmc_modulation(), psmc_shutdown(),
psmc_duty(), psmc_freqg adjust(), psmc_pins()

psp output full() psp input full() psp overflow() psp error(
) _psp timeout()

Syntax:

result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error();
result = psp_timeout();

Parameters:

Returns:
A 0 (FALSE) or 1 (TRUE)

Function:
These functions check the Parallel Slave Port (PSP) for the indicated conditions and
return TRUE or FALSE.

Availability:
All Devices with PSP module
Requires:
Examples:
while (psp output full()) -
psp_data = command;

388

Built-in Functions

while (!psp_input full()) ;
if (psp_overflow())
error = TRUE;
else
data = psp_data;

Example Files:
ex_psp.c

See Also:
setup_psp(), PSP Overview

psp read()

Syntax:
Result = psp_read ();
Result = psp_read (address);

Parameters:
address - The address of the buffer location that needs to be read. If address is not
specified, use the function psp_read() which will read the next buffer location.

Returns:
A byte of data

Function:
psp_read() will read a byte of data from the next buffer location and psp_read(address)
will read the buffer location address.

Availability:
Only the devices with a built in Parallel Master Port module of Enhanced Parallel Master
Port module

Requires:

Examples:
Result = psp read(); // Reads next byte of data
Result = psp read(3); // Reads the buffer location 3

389

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full),pmp_overflow()

psSp_write

Syntax:
psp_write (data);
psp_write(address, data);

Parameters:
address - The buffer location that needs to be written to
data - The byte of data to be written

Returns:
Undefined

Function:
This will write a byte of data to the next buffer location or will write a byte to the specified
buffer location.

Availability:
Only the devices with a built in Parallel Master Port module or Enhanced Parallel Master
Port module

Requires:

Examples:
psp_write(data); // Write the data byte to the next buffer
location

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input full),pmp overflow().

putc send() fputc send()

Syntax:
putc_send();
fputc_send(stream);

390

Built-in Functions

Parameters:
stream — parameter specifying the stream defined in #USE RS232

Returns:
Undefined

Function:
Function used to transmit bytes loaded in transmit buffer over RS232. Depending on the
options used in #USE RS232 controls if function is available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently transmitting. If
not transmitting it will then check for data in transmit buffer. If there is data in transmit
buffer it will load next byte from transmit buffer into the hardware TX buffer, unless using
CTS flow control option. In that case it will first check to see if CTS line is at its active
state before loading next byte from transmit buffer into the hardware TX buffer.

If using hardware UARTx with TXISR option, function only available if using CTS flow
control option, it will test to see if the TBEX interrupt is enabled. If not enabled it will then
test for data in transmit buffer to send. If there is data to send it will then test the CTS
flow control line and if at its active state it will enable the TBEX interrupt. When using the
TXISR mode the TBEX interrupt takes care off moving data from the transmit buffer into
the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check if there is data
in transmit buffer to send. If there is data it will then check the CTS flow control line, and
if at its active state it will clock out the next data byte.

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE RS232 (UART1,BAUD=9600, TRANSMIT BUFFER=50, NOTXISR)
printf (“Testing Transmit Buffer”);
while (TRUE) {
putc_send() ;
}

See Also:
USE RS232(), rev_buffer full(), tx_buffer full(), tx_buffer bytes(), getc(), putc()
rintf(), setup uart(),putc()

391

Built-in Functions

pwm_off()

Syntax:
pwm_on([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM

Returns:
Undefined

Function:
To turn off the PWM signal.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();
if (c=='0")
pwm_on () ;

}

See Also:
#use pwm, pwm_off(), pwm_set duty percent(), pwm_set_duty(), pwm_set frequency()

pwm set duty()

Syntax:
pwm_set_duty([stream],duty);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.
duty — an int16 constant or variable specifying the new PWM high time

Returns:
Undefined

392

Built-in Functions

Function:

To change the duty cycle of the PWM signal. The duty cycle percentage depends on the
period of the PWM signal. This function is faster than pwm_set_duty_percent(), but
requires you to know what the period of the PWM signal is.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

See Also:
#use_pwm, pwm_on(), pwm_off(), pwm_set_frequency(), pwm_set duty percent()

pwm set duty percent()

Syntax:
pwm_set_duty percent([stream], percent);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.

percent- an int16 constant or variable ranging from 0 to 1000 specifying the new PWM duty cycle,
D is 0% and 1000 is 100.0%.

Returns:
Undefined

Function:
To change the duty cycle of the PWM signal. Duty cycle percentage is based off the current
frequency/period of the PWM signal.

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM(OUTPUT:PIN_CZ, FREQUENCY=10kHz, DUTY=25)
pwm_set duty percent (500) ; //set PWM duty cycle to 50%

393

Built-in Functions

See Also:
#use_pwm, pwm_on(), pwm_off(), pwm_set frequency(), pwm_set duty()

pwm set frequency()

Syntax:
pwm_set_set_frequency([stream],frequency);

Parameters:
stream — optional parameter specifying the stream defined in #USE PWM.

frequency — an int32 constant or variable specifying the new PWM frequency.

Returns:
Undefined

Function:
To change the frequency of the PWM signal. Warning this may change the resolution of the PWM
signal

Availability:
All Devices

Requires:
#USE PWM

Examples:
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency(1000); //set PWM frequency to 1lkHz

See Also:
#use _pwm, pwm_on(), pwm_off(), pwm_set duty percent, pwm_set duty()

pwml interrupt active() pwm?2 interrupt active()
pwm3 interrupt active() pwm4 interrupt active()
pwmb5 interrupt active() pwm®6 interrupt active()

Syntax:

result_pwm1_interrupt_active (interrupt)
result_pwm?2_interrupt_active (interrupt)
result_pwm3_interrupt_active (interrupt)

394

Built-in Functions

result_pwmd_interrupt_active (interrupt)
result_pwmb5_interrupt_active (interrupt)
result_pwm6_interrupt_active (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

pwm_period_interrupt

pwm_duty_interrupt

pwm_phase_interrupt

pwm_offset_interrupt

Returns:
TRUE if interrupt is active. FALSE if interrupt is not active.

Function:
Tests to see if one of the above PWM interrupts is active, interrupt flag is set.

Availability:
Devices with a 16-bit PWM module

Requires:
#USE PWM

Examples:
if (pwml interrupt active (PWM PERIOD INTERRUPT))
clear pwml interrupt (PWM PERIOD INTERRUPT)

See Also:
setup_pwm(), set_ pwm _duty(), set pwm_phase(), set pwm_period(), set pwm _offset(),
enable pwm interrupt(), clear pwm interrupt(), disable pwm interrupt()

ipcp] gei get capture()

Syntax:
value = gei_get_capture();
value = gei_get_capture(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the capture value from. Defaults
to 1 if not specified.

Returns:
The 32-bit capture value of the specified QEI unit.

395

Built-in Functions

Function:
Used to get the capture value for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if
function is available.

Requires:

Examples:

Unsigned int32 Value;
Value = gei get capture(l);

See Also:
setup _gei(), gei _set count(), gei_status(), gei_set _index count(),
gei_get index_count(), gei_get velocity count(), gei_get interval count()

gei get count()

Syntax:
value = gei_get_count([type]);
rco] value = gei_get_count([unit]);

Parameters:
type - Optional parameter to specify which counter to get, defaults to position counter.
Defined in devices .h file as:

gei_get_position_count

gei_get velicity _count

pcp] Value- The 16-bit value of the position counter.
[pcp] Unit- Optional unit number, defaults to 1.

Returns:
The 16-bit value of the position counter or velocity counter.
pcp) void

Function:
Reads the current 16-bit value of the position or velocity counter.
rep] Reads the current 16-bit value of the position counter.

396

Built-in Functions

Availability:

Devices that have the QEI module

Requires:

Examples:
value = gei get counter (QEI GET POSITION COUNT) ;
value = gei get counter();
value = gei get counter (QEI GET VELOCITY COUNT) ;
eepj value = gei get counter();

See Also:

setup _qei() , gei_set_count() , gei_status()

pep] gei get index count()

Syntax:
value = gei_get_index_count();
value = gei_get_index_count(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the index count value from.
Defaults to 1 if not specified.

Returns:
The 32-bit index count for the specified QEI unit.

Function:
Used to get the index count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if
function is available.

Requires:

Examples:

Unsigned int32 IndexCount;
IndexCount = gei get index count(1l);

397

Built-in Functions

See Also:
setup_qei(), gei_set count(), gei status(), gei_set index count(), gei_get capture(),
gei_get velocity count(), gei get interval count()

pep] gei get interval count()

Syntax:
value = gei_get_interval_count();
value = gei_get_interval_count(unit);

Parameters:
unit - optional parameter specifying the QEI unit to read the interval count value from.
Defaults to 1 if not specified.

Returns:
The 32-bit interval count for the specified QEI unit.

Function:
Used to get the interval count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if
function is available.

Requires:

Examples:

Unsigned int32 IntervalCount;
IntervalCount = gei get interval count(1);

See Also:
setup_gei(), gei_set count(), gei status(), gei_set index count(), gei_get capture(),
gei_get velocity count(), gei_get index count()

ircol gei get velocity count()

Syntax:
value = gei_get_velocity count();
value = gei_get_velocity _count(unit);

398

Built-in Functions

Parameters:
unit - optional parameter specifying the QEI unit to read the velocity count value from.
Defaults to 1 if not specified.

Returns:
The 16-bit velocity count for the specified QEI unit.

Function:
Used to get the velocity count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if
function is available.

Requires:

Examples:

Unsigned int32 VelocityCount;
VelocityCount = gei get velocity count(1l);

See Also:
setup _gei(), gei_set count(), gei status(), gei_set index count(), gei_get capture(),
gei_get interval count(), gei get index count()

gei set count()

Syntax:
gei_set_count(value);
pcp] gei_set_count([unit,] value)

Parameters:

value - The 16-bit value of the position counter.

prcp] Value - The 16-bit value of the position counter.
[pep] Unit- Optional unit number, defaults to 1.

Returns:
Void

Function:
Write a 16-bit value to the position counter.

399

Built-in Functions

Availability:
Devices that have the QEI module

Requires:

Examples:
gel set counter (value);

See Also:
setup _gei() , gei_get count() , gei_status()

ipcp] dei set index count()

Syntax:
gei_set_index_count();
gei_set_index_count(unit, count);

Parameters:

unit - optional parameter specifying the QEI unit to set the index count value from.
Defaults to 1 if not specified.

count - the 32-bit value to set the index count to.

Returns:

Function:
Used to set the index count for the specified QEI unit.

Availability:
Some devices that have a QEI module. See the device's header file to determine if
function is available.

Requires:

Examples:

gei set index count (1, 500);

See Also:
setup _gei(), gei_set count(), gei status(), gei_get velocity count(),
gei_get capture(), gei _get interval count(), gei _get index count()

400

gei status()

Syntax:
status = qgei_status();
[pcp] Status = gei_status([unit]);

Parameters:
None
lpep] Status- The status of the QEI module

pep] Unit- Optional unit number, defaults to 1

Returns:
The status of the QEI module.
pcp) Void

Function:
Returns the status of the QEI module.
rep] Returns the status of the QUI module

Availability:
Devices that have the QEI module

Requires:

Examples:
status = gei status();

See Also:
setup_gei() , gei_set count() , gei_get count()

gsort()

Syntax:
gsort (base, num, width, compare)

Parameters:
base: Pointer to array of sort data

num: Number of elements
width: Width of elements

compare: Function that compares two elements
401

Built-in Functions

Returns:

Function:

Built-in Functions

Performs the shell-metzner sort (not the quick sort algorithm). The contents of the array
are sorted into ascending order according to a comparison function pointed to by

compare

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

int nums([5]={ 2,3,1,5,4};
int compar (void *argl,void *arg2?);

void main () {

gsort (nums, 5, sizeof (int), compar);
}
int compar (void *argl,void *arg2) {

if (* (int *) argl < (* (int *) arg2) return -1

else 1f (* (int *)

else return 1;

}

Example Files:
ex_gsort.c

See Also:

bsearch()

rand()

Syntax:
re=rand()

Parameters:

Returns:
A pseudo-random integer

argl == (* (int *) arg2) return 0

402

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
The rand function returns a sequence of pseudo-random integers in the range of 0 to
RAND_MAX.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int I;
I=rand () ;

See Also:

srand()

rcv buffer bytes()

Syntax:
value = rcv_buffer_bytes([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE RS232

Returns:
Number of bytes in receive buffer that still need to be retrieved

Function:
Function to determine the number of bytes in receive buffer that still need to be retrieve

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE_RSZ32 (UART1, BAUD=9600, RECEIVE_BUFFERZIOO)
void main (void) {
char c;
if (rcv_buffer bytes() > 10)
c = getc();

403

See Also:

Built-in Functions

USE RS232(), rev_buffer full(), tx_buffer full(), tx_buffer bytes(), getc(), putc)

printf(), setup uart(), putc_send()

rcv buffer full()

Syntax:
value = rcv_buffer_full([stream]);

Parameters:
stream — optional parameter specifying the stream defined in #USE RS232

Returns:
TRUE if receive buffer is full, FALSE otherwise

Function:
Function to test if the receive buffer is full

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE_RS232 (UART1, BAUD=9600, RECE IVE_BUFFER=]_OO)
void main (void) {
char c;
if (rcev_buffer full())
c = getc();
}

See Also:

USE RS232(), rcv buffer full(), tx_buffer bytes(), tx buffer bytes(), getc(), putc)

printf(), setup uart(), putc_send()

read adc() [pcp; read adc2()

Syntax:

value = read_adc ([mode])

ipep] Value = read_adc2 ([mode])

pep] Value=read_adc(mode,[channel])

404

Built-in Functions

Parameters:

mode - is an optional parameter. If used the values may be:
adc_start_and_read (continually takes readings, this is the default)
adc_start_only (starts the conversion and returns)
adc_read_only (reads last conversion result)

rep] channel - is an optional parameter for specifying the channel to start the conversion
on and/or read the result from. If not specified will use channel specified in last call to
set_adc_channel(), read_adc(), or adc_done().

Returns:
Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

Function:

This function will read the digital value from the analog to digital converter. Calls to
setup_adc(), setup_adc_ports() and set_adc_channel() should be made sometime
before this function is called. The range of the return value depends on number of bits in
the chips A/D converter and the setting in the #DEVICE ADC= directive as follows:

#DEVICE 8 bit 10 bit 11 bit 12 bit 16 bit

ADC=8 00-FF 00-FF 00-FF 00-FF 00-FF

ADC=10 X 0-3FF X 0-3FF X

ADC=11 X X 0-7FF X X

rco] ADC=12 ircp] O-FFC pco] O-FFF

ADC=16 OFF00 0-FFCO 0-FFEO 0-FFFO O0-FFFF
Availability:

This function is only available on devices with A/D hardware.
ireo] Only available on devices with built in analog to digital converters.

Requires:
Pin constants are defined in the devices .h file

Examples:
setup_adc(ADC CLOCK_ INTERNAL);
setup adc ports(ALL ANALOG) ;
set _adc channel (1);
while (input (PIN BO)) {

delay ms(5000);
value = read adc();

printf ("A/D value %$2x\n\r", value);

405

Built-in Functions

read_adc (ADC_START_ONLY) ;
sleep();
value=read adc (ADC_READ ONLY) ;

[PCD]

intl6 value;
setup adc ports (sANO|sANl, VSS VDD);
setup adc (ADC CLOCK DIV 4 |ADC TAD MUL 8);

while (TRUE)

{

}

set adc_ channel (0) ;
value = read adc();
printf (“Pin ANO A/C value = 3%LX\n\r”, value);

delay ms (5000);

set _adc channel (1);
read adc (ADC_START ONLY) ;

value = read adc (ADC_READ ONLY) ;
printf ("Pin AN1 A/D value = 3%LX\n\r", value);

Example Files:
ex_admm.c, ex_14kad.c

See Also:
setup _adc(), set_adc _channel(), setup _adc_ports(), #DEVICE, ADC Overview

read bank()

Syntax:
value = read_bank (bank, offset)

Parameters:
bank - is the physical RAM bank 1-3 (depending on the device)

offset - is the offset into user RAM for that bank (starts at 0)

Returns:
8 bit int

406

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Function:

Read a data byte from the user RAM area of the specified memory bank. This function
may be used on some devices where full RAM access by auto variables is not

efficient. For example, setting the pointer size to 5 bits on the PIC16C57 chip will
generate the most efficient ROM code. However, auto variables can not be above 1Fh.
Instead of going to 8 bit pointers, you can save ROM by using this function to read from
the hard-to-reach banks. In this case, the bank may be 1-3 and the offset may be 0-15.

Availability:
All devices but only useful on PCB parts with memory over 1Fh and PCM parts with
memory over FFh

Requires:
Examples:
// See write bank() example to see
// how we got the data
// Moves data from buffer to LCD
i=0;
do {
c=read bank(1l,i++);
if (c!=0x13)

lcd putc(c);
} while (c!=0x13);

Example Files:
ex_psp.c

See Also:

write _bank()

read calibration()

Syntax:
value = read_calibration (n)

Parameters:
n is an offset into calibration memory beginning at O

Returns:
8 bit byte

407

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
The read_calibration function reads location "n" of the 14000-calibration memory

Availability:
This function is only available on the PIC14000

Requires:

Examples:
fin = read calibration(16);

Example Files:
ex_14kad.c with 14kcal.c

read calibration memory()

Syntax:
value = read_calibration_memory (cal_word)

Parameters:
cal_word - calibration word to read from calibration memory (1-16).

Returns:
unsigned int16 value read from calibration memory.

Function:
Allows for reading one of the calibration words from the calibration memory.

Availability:
This function is only available on MCP191xx devices.

Requires:

Examples:
CALWDl=read calibration memory (1) ;

See Also:
Program EEPROM Overview

408

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

read config info()

Syntax:
read_config_info([offset], ramPtr, count)

Parameters:
ramPTR - is the destination pointer for the read results.

count - is the number of bytes to read.

Offset - is an optional parameter specifying the offset into the DCI memory to start
reading from, offset default to zero if not used.

Returns:

Function:

Read count bytes from Device Configuration Area (DCI) memory and saves the values
to ramPtr. The DCI region of memory contains read-only data about the device's
configuration.

Availability:
Devices with a DCI memory region.

Requires:

Examples:

unsigned intl6 EraseSize;
read device info (&EraseSize, 2); //reads Erase Row Size from DCI
memory

See Also:
read_configuration_memory(), read device info(), Configuration Memory Overview

read configuration memory()

Syntax:
read_configuration_memory([offset], ramPtr, n)

Parameters:
ramPtr - is the destination pointer for the read results

409

Built-in Functions

count - is an 8 bit integer

offset - is an optional parameter specifying the offset into configuration memory to start
reading from, offset defaults to zero if not used.

Returns:
Undefined

Function:

Reads n bytes of configuration memory and saves the values to ramPtr.

For Enhanced16 devices function reads User ID, Device ID and configuration memory
regions.

Availability:
All Devices

Requires:

Examples:

int datal6];
read configuration memory (data, 6)

See Also:
write _configuration_memory(), read program_memory(), Configuration Memory
Overview, Configuration Memory Overview

read device info()

Syntax:
read_device_info([offset], ramPtr, count)

Parameters:
ramPTR - is the destination pointer for the read results.

count - is the number of bytes to read.

Offset - is an optional parameter specifying the offset into the DIA memory to start
reading from, offset default to zero if not used.

Returns:

410

Built-in Functions

Function:
Read count bytes from Device Information Area (DIA) memory and saves the values to
ramPtr. The DIA region of memory contains read-only data used to identify the device.

Availability:
Devices with a DIA memory region.

Requires:

Examples:

unsigned intl6 identifier([9];
read device info(identifier, 18); //reads Unique Identifier from
DIA memory.

See Also:
read configuration _memory(), read config_info(), Configuration Memory Overview

read dmt()

Syntax:
Value =read_dmt(which);

Parameters:
which - an 8-bit constant indicating which DMT registers to read. The following defines
are made in the device's header for selecting the register to read:
DMT_READ_COUNT /I the current count
DMT_READ_MAX_VALUE /I the value the count needs to reach for a DMT
event to occur
DMT_READ_WINDOW_VALUE // the value the count needs to reach before it can
be cleared

Returns:
An int32 value indicating the value that was read from the specified DMT registers.

Function:
Used to read the DMTCNT, DMTPSCNT and DMTPSINTYV registers of the Deadman
Timer (DMT) peripheral.

Availability:

411

Built-in Functions

Requires:

Examples:
Value = read dmt (DMT READ COUNT) ;

See Also:
clear_dmt(), disable _dmt(), enable dmt(), dmt_ status(), setup dmt()

read eeprom()

Syntax:
value = read_eeprom (address)

pcp] Value = read_eeprom (address , [N])
read_eeprom(address,variable)
read_eeprom(address, pointer, N)

Parameters:
address - is an 8 bit or 16 bit int depending on the part

irep] N - specifies the number of EEPROM bytes to read
pco] variable - a specified location to store EEPROM read results
[Pcp] pointer - is a pointer to location to store EEPROM read results

Returns:
An 8 bit int
trep] A 16 bit int

Function:

Reads a byte from the specified data EEPROM address. The address begins at 0 and
the range depends on the part.

ircp] By default the function reads a word from EEPROM at the specified address. The
number of bytes to read can optionally be defined by argument N. If a variable is used as
an argument, then EEPROM is read and the results are placed in the variable until the
variable data size is full. Finally, if a pointer is used as an argument, then n bytes of
EEPROM at the given address are read to the pointer.

Availability:
This command is only for parts with built-in EEPROMs

412

Built-in Functions

Requires:

Examples:

#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

See Also:
write_eeprom(), erase_eeprom(), Data Eeprom Overview

read extended ram()

Syntax:
read_extended_ram(page,address,data,count);

Parameters:
page — the page in extended RAM to read from

address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)

Returns:
Undefined

Function:
To read data from the extended RAM of the device.

Availability:
On devices with more then 30K of RAM

Requires:

Examples:

unsigned int8 datal8];
read extended ram(1l,0x0000,data,8);

See Also:
Extended RAM Overview

413

Built-in Functions

read program memory()

Syntax:
READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters:
address is 32 bits. The least significant bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16
count is a 16 bit integer for PIC18 and dsPIC/PIC24

Returns:
Undefined

Function:
Reads count bytes from program memory at address to RAM at dataptr.

Availability:
On devices with the ability to Read program memory.

Requires:

Examples:

char buffer[64];
read program memory (0x40000, buffer, 64);

See Also:
write program memory(), External memory overview , Program Eeprom Overview

read high speed adc()

Syntax:

read_high_speed_adc(pair,mode,result); /I Individual start and read or read only
read_high_speed_adc(pair,result); /I Individual start and read
read_high_speed_adc(pair); /I Individual start only
read_high_speed_adc(mode,result); I/l Global start and read or read only
read_high_speed_adc(result); /l Global start and read
read_high_speed_adc(); /I Global start only

414

Built-in Functions

Parameters:

pair — Optional parameter that determines which ADC pair number to start and/or read.
Valid values are 0 to total number of ADC pairs. 0 starts and/or reads ADC pair ANO
and AN1, 1 starts and/or reads ADC pair AN2 and ANS3, etc. If omitted then a global start
and/or read will be performed.

mode — Optional parameter, if used the values may be:
adc_start_and_read (starts conversion and reads result)
adc_start_only (starts conversion and returns)
adc_read_only (reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if not used the
read_fast_adc() function can only perform a start.

Returns:
Undefined

Function:

This function is used to start an analog to digital conversion and/or read the digital value
when the conversion is complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime before this function is called.

When using this function to perform an individual start and read or individual start only,
the function assumes that the pair's trigger source was set to
individual_software_trigger.

When using this function to perform a global start and read, global start only, or global
read only. The function will perform the following steps:

Determine which ADC pairs are set for global_software_trigger

Clear the corresponding ready flags (if doing a start).

Set the global software trigger (if doing a start).

Read the corresponding ADC pairs in order from lowest to highest (if doing a read).
Clear the corresponding ready flags (if doing a read).

SUEE S

When using this function to perform a individual read only. The function can read the
ADC result from any trigger source.

Availability:
Only on dsPIC33FJxxGSxxx devices

Requires:
Constants are define in the device .h file

415

Built-in Functions

Examples:

//Individual
start and read
intl6 result[2];

setup high speed adc (ADC CLOCK DIV 4);
setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read high speed adc (0, result); //starts
conversion for ANO

//and AN1 and
stores result

//1in result[0]
and result[1l]

//Global start
and read
intl6 result[4];

setup _high speed adc (ADC_CLOCK DIV 4);
setup _high speed adc pair (0, GLOBAL SOFTWARE TRIGGER);
setup high speed adc pair (4, GLOBAL SOFTWARE TRIGGER);
read high speed adc(result); //starts
conversion for ANO, ANI1,

//AN8 and AN9 and
stores result in

//result[0],
result //[1], result[2]

//and result[3]

See Also:
setup _high speed adc(), setup _high speed adc pair(), high speed adc done()

read program memory()

Syntax:
value = read_program_eeprom (address)

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts

Returns:
16 bits

Function:
Reads data from the program memory

416

Built-in Functions

Availability:
Only devices that allow reads from program memory

Requires:

Examples:

checksum = 0;

for (i=0;1<8196;i++)
checksum”=read program eeprom(i);

printf ("Checksum is %2X\r\n",checksum) ;

See Also:
write_program_eeprom(), write_eeprom(), read_eeprom(), Program Eeprom Overview

read program memory()

Syntax:
READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters:
address is 32 bits. The least significant bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16
count is a 16 bit integer for PIC18 and dsPIC/PIC24

Returns:
Undefined

Function:
Reads count bytes from program memory at address to RAM at dataptr.

Availability:
On devices with the ability to Read program memory.

Requires:

Examples:

417

Built-in Functions

char buffer[64];
read program memory (0x40000, buffer, 64);

See Also:
write program memory(), External memory overview , Program Eeprom Overview

read program memory8()

Syntax:
READ_PROGRAM_MEMORY8 (address, dataptr, count);

Parameters:
address is 16 bits to start reading data from the program memory.

dataptr is a pointer to an array of bytes to store read data to.
count is the number of bytes to read from program memory.

Returns:
Undefined

Function:

Reads count bytes from program memory. This function only reads the least significant
byte from each address in program memory. See read program_memory() for a
function that can read all the data from each address in program memory.

Availability:
Only on PCM devices with the ability to Read program memory.

Requires:

Examples:
read program memory8 (Address, Data, 128);
See Also:

read program_memory(), write program memory(), write_program_memory8(),
Program Eeprom Overview

read rom memory()

Syntax:
read_rom_memory (address, dataptr, count);

418

Built-in Functions

Parameters:

address - is 32 bits. The least significant bit should always be 0.
dataptr - is a pointer to one or more bytes.

count - is a 16 bit integer

Returns:
Undefined

Function:
Reads count bytes from program memory at address to dataptr.
rco] 24 bit program instruction size, 3 bytes are read from each address location

Availability:
Only devices that allow reads from program memory

Requires:

Examples:

char buffer[64];
read program memory (0x40000, buffer, 64);

See Also:
write _program_eeprom() , write_eeprom(), read eeprom(), Program eeprom overview

read sd adc()

Syntax:
value =read_sd_adc();

Parameters:

Returns:
A signed 32 bit int

Function:

To poll the SDRDY bit and if set return the signed 32 bit value stored in the SD1RESH
and SD1RESL registers, and clear the SDRDY bit. The result returned depends on
settings made with the setup_sd_adc() function, but will always be a signed int32 value
with the most significant bits being meaningful. Refer to Section 66, 16-bit Sigma-Delta

419

Built-in Functions

A/D Converter, of the PIC24F Family Reference Manual for more information on the
module and the result format.

Availability:
Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC) module

Requires:

Examples:
value = read sd adc()

See Also:
setup sd_adc(), set sd adc calibration(), set sd _adc channel()

realloc()

Syntax:
realloc (ptr, size)

Parameters:
ptr - is a null pointer or a pointer previously returned by calloc or malloc or realloc
function, size is an integer representing the number of byes to be allocated.

Returns:
A pointer to the possibly moved allocated memory, if any. Returns null otherwise.

Function:

The realloc function changes the size of the object pointed to by the ptr to the size
specified by the size. The contents of the object shall be unchanged up to the lesser of
new and old sizes. If the new size is larger, the value of the newly allocated space is
indeterminate. If ptr is a null pointer, the realloc function behaves like malloc function for
the specified size. If the ptr does not match a pointer earlier returned by the calloc,
malloc or realloc, or if the space has been deallocated by a call to free or realloc
function, the behavior is undefined. If the space cannot be allocated, the object pointed to
by ptr is unchanged. If size is zero and the ptr is not a null pointer, the object is to be
freed.

Availability:
All Devices

Requires:
#INCLUDE <stdlibm.h>

420

Examples:

int * iptr;
iptr=malloc (10);

realloc (iptzr, 20)

memory of

See Also:

// 20 bytes,

malloc(), free(), calloc()

release

io()

Syntax:

release_io();

Parameters:

Function:

Built-in Functions

// iptr will point to a block of

if available

The function is used to release the I1/O on devices that have woken up from deep sleep.

Availability:
Devices with a Deep Sleep Watch Dog Timer (DSWDT) peripheral.

Requires:

Examples:

restart=restart cause();

switch (restart)

{

case
case
case
case

RTC_FROM DS:
DSWDT FROM DS:
ULPWU_ FROM DS:
EXT FROM DS:

release _io();
break;

421

Built-in Functions

}

See Also:
slee

reset cpu()

Syntax:
reset_cpu()

Parameters:

Returns:
This function never returns

Function:
This is a general purpose device reset. It will jump to location O on PCB and PCM parts
and also reset the registers to power-up state on the PIC18.

Availability:
All Devices

Requires:

Examples:

if (checksum!=0)
reset cpu();

restart cause()

Syntax:
value = restart_cause()

Parameters:

Returns:

A value indicating the cause of the last processor reset. The actual values are device
dependent. See the device .h file for specific values for a specific device. Some example
values are: wdt_from_sleep, wdt_timeout, mclr_from_sleep and normal_power_up

422

Built-in Functions

[Pcp] reset_power_up, restart_brownout, restart wdt and sestart_mclr, wdt_from_sleep

Function:
Returns the cause of the last processor reset.

ieeo] In order for the result to be accurate, it should be called immediately in main().

Availability:
All Devices

Requires:
Constants are defined in the devices .h file

Examples:

switch (restart cause()) {
case WDT FROM SLEEP:
case WDT TIMEOUT:
handle error();

}

[PCD]
switch (restart cause()) {
case RESTART BROWNOUT:
case RESTART WDT:
case RESTART MCLR:
handle error();

}

Example Files:
ex_wdt.c

See Also:
restart wdt(), reset cpu()

restart wdt()

Syntax:
restart_wdt()

Parameters:

423

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
Restarts the watchdog timer. If the watchdog timer is enabled, this must be called
periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears to be
stuck.

The timer must be enabled, the timeout time set and software must periodically restart
the timer. These are done differently on the PCB/PCM and PCH parts as follows:
PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability:
All Devices

Requires:
#FUSES

Examples:

#fuses WDT // PCB/PCM example
// See setup wdt for a PIC18 example
main () {
setup wdt (WDT_ 2304MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

Example Files:
ex_wdt.c

See Also:
#EUSES, setup wdt(), WDT or Watch Dog Timer Overview

rotate left()

Syntax:
rotate_left (address, bytes)

424

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Parameters:
address - is a pointer to memory

Built-in Functions

bytes - is a count of the number of bytes to work with

Returns:
Undefined

Function:

Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is

considered the LSB.

Availability:
All Devices

Requires:

Examples:

x = 0x86;
rotate left(&x, 1);

See Also:
rotate right(), shift left(), shift right()

rotate right()

Syntax:
rotate_right (address, bytes)

Parameters:
address - is a pointer to memory

// x is now 0x0d

bytes - is a count of the number of bytes to work with

Returns:
Undefined

425

Built-in Functions

Function:

Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit 0 of the lowest BYTE in RAM is
considered the LSB.

Availability:
All Devices
Requires:
Examples:
struct {
int cell 1 4;
int cell 2 4;
int cell 3 4;
int cell 4 4; } cells;
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2); // cell 1->4, 2->1, 3->2 and 4-
> 3
See Also:

rotate left(), shift_left(), shift _right()

rtc alarm read()

Syntax:
rtc_alarm_read(&datetime);

Parameters:
datetime- A structure that will contain the values to be written to the alarm in the RTCC

module.

Structure used in read and write functions are defined in the device header file as
rtc_time_t

Returns:
Void

426

Built-in Functions

Function:
Reads the date and time from the alarm in the RTCC module to structure datetime.

Availability:
Devices that an RTCC module

Requires:

Examples:
rtc_alarm read(&datetime);

See Also:
rtc_read(), rtc_alarm read(), rtc_alarm write(), setup rtc_alarm(), rtc_write(), setup rtc()

rtc alarm write()

Syntax:
rtc_alarm_write(&datetime);

Parameters:
datetime- A structure that will contain the values to be written to the alarm in the RTCC
module.

Structure used in read and write functions are defined in the device header file as
rtc_time_t

Returns:
Void

Function:
Write the date and time from the alarm in the RTCC module to structure datetime.

Availability:
Devices that an RTCC module

Requires:

Examples:

427

Built-in Functions

rtc_alarm write (&datetime);

See Also:
ric_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_read()

Syntax:
rtc_read(&datetime);

Parameters:
datetime- A structure that will contain the values returned by the RTCC module.

Structure used in read and write functions are defined in the device header file as
rtc_time_t

Returns:

Void

Function:

Reads the current value of Time and Date from the RTCC module and stores the
structure date time.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) module.

Requires:

Examples:
rtc_read(&datetime);

Example Files:
ex_rtcc.c

See Also:
rtc_read(), ric_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

428

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

pcp] rtc status()

Syntax:
Status = rtc_status();

Parameters:

Returns:

An int8 value indicating the status of the RTCC module. See the device's header file for
constants that can be and'ed with return value to determine that state of the individual
status bits.

Function:
Used to determine the status of the RTCC module.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) with Timestamp module.

Requires:

Examples:

rtc_time t TimeStamp;

rtc_tsa read(&TimeStamp) ; //read Timestamp A registers
rtc_tsb read(&TimeStamp) ; //read Timestamp B registers
See Also:

setup_rtc(), setup _rtc_alarm(), rtc_read(), rtc_write(), ric_alarm_read(), rtc_alarm_write(

), rtc_tsx_read()

pcp] rtc tsx read()

Syntax:
rtc_tsa_read(×tamp);
rtc_tsb_read(×tamp);

Parameters:
timestamp - a structure of rtc_time_t to return the timestamp value.

Returns:

429

Built-in Functions

Function:
Used to read the Timestamp A and Timestamp B registers and converts them to be
compatible with the rtc_time_t structure.

Availability:
Devices that have a Real-Time Clock and Calendar (RTCC) with Timestamp module.

Requires:

Examples:

rtc_time t TimeStamp;

rtc_tsa read(&TimeStamp) ; //read Timestamp A registers
rtc_tsb read(&TimeStamp) ; //read Timestamp B registers
See Also:

setup rtc(), setup rtc_alarm(), rtc_read(), rtc_write(), rtc_alarm_read(), rtc_alarm_write(
), rtc_status()

rtc_write()

Syntax:
rtc_write(&datetime);

Parameters:
datetime- A structure that will contain the values to be written to the RTCC module.

Structure used in read and write functions are defined in the device header file as
rtc_time_t

Returns:
Void

Function:
Writes the date and time to the RTCC module as specified in the structure date time.

Availability:
Devices that an RTCC module

Requires:

430

Built-in Functions

Examples:
rtc _write(&datetime);

Example Files:
ex_rtcc.c

See Also:
rtc_read() , rtc_alarm read() , rtc_alarm write() , setup rtc_alarm() , rtc_write(),

setup_rtc()

rtos await()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_await (expre)

Parameters:
expre is a logical expression

Returns:

Function:

This function can only be used in an RTOS task. This function waits for expre to be true
before continuing execution of the rest of the code of the RTOS task. This function allows
other tasks to execute while the task waits for expre to be true.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos_await (kbhit());

See Also:

431

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

rtos disable()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_disable (task)

Parameters:
task - is the identifier of a function that is being used as an RTOS task

Returns:

Function:
This function disables a task which causes the task to not execute until enabled by
rtos_enable(). All tasks are enabled by default.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos disable(toggle green);

See Also:

rtos enable()

rtos enable()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_enable (task)

Parameters:
task - is the identifier of a function that is being used as an RTOS task

Returns:

432

Built-in Functions

Function:
This function enables a task to execute at it's specified rate.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos_enable (toggle green);

See Also:

rtos disable()

rtos_msg poll()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
i = rtos_msg_poll()

Parameters:

Returns:
An integer that specifies how many messages are in the queue

Function:
This function can only be used inside an RTOS task. This function returns the number of
messages that are in the queue for the task that the rtos_msg_poll() function is used in.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
if(rtos_msg poll())

433

Built-in Functions

See Also:
rtos msq send(), rtos msg read()

rtos_msq read()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
b = rtos_msg_read()

Parameters:

Returns:
A byte that is a message for the task

Function:
This function can only be used inside an RTOS task. This function reads in the next
(message) of the queue for the task that the rtos_msg_read() function is used in.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

if (rtos_msg poll()) {
b = rtos msg read();

See Also:
rtos msq poll(), rtos msg send()

rtos msq send()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_msg_send(task, byte)

434

Built-in Functions

Parameters:
task - is the identifier of a function that is being used as an RTOS task

byte - is the byte to send to task as a message

Returns:

Function:
This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by task.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

if (kbhit ())
{

rtos msg send(echo, getc());

}

See Also:
rtos_msqg_poll(), rtos_msqg_read()

rtos overrun()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_overrun([task])

Parameters:
task - is an optional parameter that is the identifier of a function that is being used as an
RTOS task

Returns:
A 0 (FALSE) or 1 (TRUE)

435

Built-in Functions

Function:

This function returns TRUE if the specified task took more time to execute than it was
allocated. If no task was specified, then it returns TRUE if any task ran over it's alloted
execution time.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

rtos_overrun() ;

rtos_run()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_run()

Parameters:

Function:

This function begins the execution of all enabled RTOS tasks. This function controls the
execution of the RTOS tasks at the allocated rate for each task. This function will return
only when rtos_terminate() is called.

Availability:
All Devices

Requires:
#USE RTOS

Examples:

rtos_run();

436

Built-in Functions

See Also:

rtos terminate()

rtos signal()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_signal (sem)

Parameters:
sem is a global variable that represents the current availability of a shared system
resource (a semaphore)

Returns:

Function:
This function can only be used by an RTOS task. This function increments sem to let
waiting tasks know that a shared resource is available for use.

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos signal (uart use);

See Also:
rtos wait

rtos stats()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_stats(task,&stat)

437

Built-in Functions

Parameters:
task - is the identifier of a function that is being used as an RTOS task.
stat - is a structure containing the following:
struct rtos_ stas struct {
unsigned int32 task total ticks; //number of ticks the
task has used

unsigned intl6 task min ticks; //the minimum number
of ticks used

unsigned intl6 task max ticks; //the maximum number
of ticks used

unsigned intl6 hns per tick; //us =

(ticks*hns per tick)/10

Returns:
Undefined

Function:
This function returns the statistic data for a specified task.

Availability:
All Devices

Requires:
#USE RTOS(statistics)

Examples:
rtos_stats(echo, &stats);

See Also:

rtos terminate()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_terminate()

Parameters:

438

Built-in Functions

Returns:

Function:

This function ends the execution of all RTOS tasks. The execution of the program will
continue with the first line of code after the rtos_run() call in the program. (This function
causes rtos_run() to return.)

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos_terminate ()

See Also:
rtos run

rtos wait()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_wait (sem)

Parameters:
sem is a global variable that represents the current availability of a shared system
resource (a semaphore)

Returns:

Function:

This function can only be used by an RTOS task. This function waits for sem to be
greater than 0 (shared resource is available), then decrements sem to claim usage of the
shared resource and continues the execution of the rest of the code the RTOS task. This
function allows other tasks to execute while the task waits for the shared resource to be
available.

439

Built-in Functions

Availability:
All Devices

Requires:
#USE RTOS

Examples:
rtos wait (uart use)

See Also:

rtos signal()

rtos vield()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:
rtos_yield()

Parameters:

Returns:

Function:

This function can only be used in an RTOS task. This function stops the execution of the
current task and returns control of the processor to rtos_run(). When the next task
executes, it will start its execution on the line of code after the rtos_yield().

Availability:
All Devices

Requires:
#USE RTOS

Examples:
void yield(void)
{

printf (“Yielding...\r\n”);
rtos _yield();

440

Built-in Functions

printf (“Executing code after yield\r\n”);

set adc channel() set adc2 channel()

Syntax:

set_adc_channel (chan [,neq]))

pcp] Set_adc_channel(chan, [differential]) //dsPIC33EPxxGSxxx only
pep] set_adc2_channel(chan)

Parameters:

chan is the channel number to select. Channel numbers start at 0 and are labeled in the
data sheet ANO, AN1. For devices with a differential ADC it sets the positive channel to
use.

neg is optional and is used for devices with a differential ADC only. It sets the negative
channel to use, channel numbers can be 0 to 6 or VSS. If no parameter is used the
negative channel will be set to VSS by default.

Returns:

Undefined

irep] differential is an optional parameter to specify if channel is differential or single-
ended. TRUE is differential and FALSE is single-ended. Only available for
dsPIC3EPxxGSxxx family.

Function:

Specifies the channel to use for the next read_adc() call. Be aware that you must wait a
short time after changing the channel before you can get a valid read. The time varies
depending on the impedance of the input source. In general 10us is good for most
applications. You need not change the channel before every read if the channel does not
change.

Availability:
This function is only available on devices with A/D hardware.
irep] Only available on devices with built in analog to digital converters

Requires:

Examples:
set adc_channel (2);

delay us(10);
value = read adc();

441

Built-in Functions

Example Files:
ex_admm.c

See Also:
read adc(), setup adc(), setup _adc_ports(), ADC Overview

set adc trigger()

Syntax:
set_adc_trigger (trigger)

Parameters:
trigger - ADC trigger source. Constants defined in device's header, see the device's .h
file for all options. Some typical options include:

ADC_TRIGGER_DISABLED

ADC_TRIGGER_ADACT_PIN

ADC_TRIGGER_TIMER1

ADC_TRIGGER_CCP1

Returns:
Undefined

Function:
Sets the Auto-Conversion trigger source for the Analog-to-Digital Converter with
Computation (ADC2) Module.

Availability:
All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
set adc_trigger (ADC_TRIGGER TIMERI);
See Also:

ADC Overview, setup _adc(), setup _adc ports(), set_adc_channel(), read adc(),
#DEVICE, adc_read(), adc_write(), adc_status()

442

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

set analog pins()

Syntax:
set_analog_pins(pin, pin, pin, ...)

Parameters:

pin - pin to set as an analog pin. Pins are defined in the device's .h file. The actual
value is a bit address. For example, bit 3 of port A at address 5, would have a value of
5*8+3 or 43. This is defined as follows: #define PIN_A3 43

Returns:
Undefined

Function:

To set which pins are analog and digital. Usage of function depends on method device
has for setting pins to analog or digital. For devices with ANSELX, x being the port letter,
registers the function is used as described above. For all other devices the function
works the same as setup_adc_ports() function.

Availability:
On all devices with an Analog to Digital Converter

Requires:

Examples:
set analog pins(PIN AQO,PIN Al,PIN EI1,PIN BO,PIN B5);
See Also:

setup _adc_reference(), set_adc channel(), read adc(), setup _adc(), setup _adc_ports(),
ADC Overview

scanf() fscanf()

Syntax:

scanf(cstring);

scanf(cstring, values...)
fscanf(stream, cstring, values...

Parameters:
cstring is a constant string.

values is a list of variables separated by commas.

443

Built-in Functions

stream is a stream identifier

Returns:
0 if a failure occurred, otherwise it returns the number of conversion specifiers that were
read in, plus the number of constant strings read in.

Function:

Reads in a string of characters from the standard RS-232 pins and formats the string
according to the format specifiers. The format specifier character (%) used within the
string indicates that a conversion specification is to be done and the value is to be saved
into the corresponding argument variable. A %% will input a single %. Formatting rules
for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the
last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99 specifying the
field width, the number of characters to be inputted. t is the type and maybe one of the
following:

c Matches a sequence of characters of the number specified by the field
width (1 if no field width is specified). The corresponding argument shall
be a pointer to the initial character of an array long enough to accept the
sequence.

s Matches a sequence of non-white space characters. The corresponding
argument shall be a pointer to the initial character of an array long
enough to accept the sequence and a terminating null character, which
will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument shall
be a pointer to an unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding argument
shall be a pointer to a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be
a pointer to a signed integer.

Ld Matches a long signed decimal integer. The corresponding argument
shall be a pointer to a long signed integer.

0 Matches a signed or unsigned octal integer. The corresponding
argument shall be a pointer to a signed or unsigned integer.

444

Lo

X or X

Built-in Functions

Matches a long signed or unsigned octal integer. The corresponding
argument shall be a pointer to a long signed or unsigned integer.

Matches a hexadecimal integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall

Li

f,gore

be a pointer to a long signed or unsigned integer.

Matches a signed or unsigned integer. The corresponding argument shall
be a pointer to a signed or unsigned integer.

Matches a long signed or unsigned integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

Matches a non-empty sequence of characters from a set of expected
characters. The sequence of characters included in the set are made up
of all character following the left bracket ([) up to the matching right
bracket (]). Unless the first character after the left bracket is a #, in which
case the set of characters contain all characters that do not appear
between the brackets. If a - character is in the set and is not the first or
second, where the first is a *, nor the last character, then the set
includes all characters from the character before the - to the character
after the -.

For example, %[a-z] would include all characters from a to z in the set
and %["a-z] would exclude all characters from a to z from the set. The
corresponding argument shall be a pointer to the initial character of an
array long enough to accept the sequence and a terminating null
character, which will be added automatically.

Assigns the number of characters read thus far by the call to scanf() to
the corresponding argument. The corresponding argument shall be a
pointer to an unsigned integer.

An optional assignment-suppressing character (*) can be used after the
format specifier to indicate that the conversion specification is to be
done, but not saved into a corresponding variable. In this case, no
corresponding argument variable should be passed to the scanf()
function.

445

Built-in Functions

A string composed of ordinary non-white space characters is executed by
reading the next character of the string. If one of the inputted characters
differs from the string, the function fails and exits. If a white-space
character precedes the ordinary non-white space characters, then white-
space characters are first read in until a non-white space character is
read.

White-space characters are skipped, except for the conversion specifiers
[, c or n, unless a white-space character precedes the [or ¢ specifiers.

Availability:
All Devices

Requires:
#USE RS232

Examples:
char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("$u%s%$1ld", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time: %1d",name,number, time

See Also:
RS232 1/0 Overview, getc(), putc(), printf()

ecp] sent getd()

Syntax:
data = sent_getd(module);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

Returns:
The data read by the SENT peripheral when it is setup as a receiver. The data type
SENT_DATA_TYPE is defined in the device's header file for organizing the nibble data.

Function:
Gets data from the Single-Edge Nibble Transmission (SENT) peripheral's data registers.

Availability:
Devices with a SENT peripheral.

446

Built-in Functions

Requires:

Examples:

SENT DATA TYPE Data;
Data = sent getd(l);

Example Files:
ex_sent_transmitter.c, ex_sent_receiver.c

See Also:
sent_putd(), setup _sent(),sent_status()

pep] sent putd()

Syntax:
sent_putd(module, data);

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

data - the data to transmit when SENT peripheral is setup as a transmitter. The data
type SENT_DATA_TYPE is defined in the device's header file for organizing the nibble
data.

Returns:

Function:
Puts data for transmission into the Single-Edge Nibble Transmission (SENT) peripheral's
data registers.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

SENT DATA TYPE Data;
sent putd(l, Data);

447

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

Example Files:
ex_sent_transmitter.c, ex_sent receiver.c

See Also:
sent_getd(),setup sent(), sent_status()

pcp] sent status()

Syntax:
status = sent_status(module);

Parameters:

module - the SENT peripheral to setup, 1 or 2 for most devices.

Returns:

Built-in Functions

The status of the SENT peripheral. See device's header file for constants that can be

and'ed with return value to determine which status flags are set.

Function:

Gets status from the Single-Edge Nibble Transmission (SENT) peripheral's status

register.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

unsigned int8 status;
status = sent status(l);

Example Files:
ex_sent_transmitter.c, ex_sent_receiver.c

See Also:
sent_putd(), sent_getd(), setup_sent()

448

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC
file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

Built-in Functions

set ccpl compare time() set ccp2 compare time()
set ccp3 compare time() set ccp5 compare time()
set ccp5 compare time()

Syntax:

set_ccpx_compare_time(time);
set_ccpx_compare_time(timeA, timeB)

Parameters:

time - may be a 16 or 32-bit constant or varaible. If 16-bit, it sets the CCPxRAL register
to the value time and CCPxRBL to zero; used for single edge output compare mode set
for 16-bit timer mode. If 32-bit, it sets the CCPxXRAL and CCPxRBL register to the value
time, CCPxXRAL least significant word and CCPRBL most significant word; used for single
edge output compare mode set for 32-bit timer mode.

timeA - is a 16-bit constant or variable to set the CCPXRAL register to the value of timeA,
used for dual edge output ¢ ompare and PWM modes.

timeB - is a 16-bit constant or variable to set the CCPxRBL register to the value of timeB,
used for dual edge output compare and PWM modes.

Returns:
Undefined

Function:

This function sets the compare value for the CCP module. If the CCP module is
performing a single edge compare in 16-bit mode, then the CCPXRBL register is not
used. If 32-bit mode, the CCPxXRBL is the most significant word of the compare time. |If
the CCP module is performing dual edge compare to generate an output pulse, then
timeA, CCPxRAL register, signifies the start of the pulse, and timeB, CCPxRBL register
signifies the pulse termination time.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules

Requires:

Examples:

setup ccpl (CCP_COMPARE PULSE) ;

set timer period ccpl (800);

set ccpl compare time (200,300); //generate a pulse starting
at time

449

Built-in Functions

// 200 and ending at time
300

See Also:
set pwmX_ duty(), setup ccpX(), set timer period ccpX(), set timer ccpX(),
get timer _ccpX(), get capture ccpX(), get captures32 ccpX()

set cog blanking() set cog2 blanking()
set coq3 blanking() set cog4 blanking()

Syntax:
set_cog_blanking(falling_time, rising_time);

Parameters:
falling time - sets the falling edge blanking time.

rising time - sets the rising edge blanking time

Returns:

Function:

To set the falling and rising edge blanking times on the Complementary Output Generator
(COG) module.

The time is based off the source clock of the COG module, the times are either a 4-bit or
6-bit value, depending on the device, refer to the

device's datasheet for the correct width.

Availability:
All devices with a COG module

Requires:

Examples:
set cog blanking(10,10);

See Also:
setup _coq(), set_cog phase(), set cog dead band(), cog_status(), cog_restart()

450

Built-in Functions

set cog dead band() set cog2 dead band()
set cog3 dead band() set cog4 dead band()

Syntax:
set_cog_dead_band(falling_time, rising_time);

Parameters:
falling time - sets the falling edge dead-band time.

rising time - sets the rising edge dead-band time.

Returns:

Function:

To set the falling and rising edge dead-band times on the Complementary Output
Generator (COG) module.

The time is based off the source clock of the COG module, the times are either a 4-bit or
6-bit value, depending on the device, refer to the

device's datasheet for the correct width.

Availability:
All devices with a COG module

Requires:

Examples:
set cog dead band(16,32);

See Also:
setup _cog(), set_cog phase(), set_cog blanking(), cog_status(), coq_restart()

set coqg phase() set cog2 phase() set cog3 phase()
set cog4 phase()
Syntax:

set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters:
falling time - sets the falling edge phase time.

451

Built-in Functions
rising time - sets the rising edge phase time.

Returns:

Function:

To set the falling and rising edge phase times on the Complementary Output Generator
(COG) module.

The time is based off the source clock of the COG module, the times are either a 4-bit or
6-bit value, depending on the device.

Some devices only have a rising edge delay, refer to the device's datasheet.

Availability:
All devices with a COG module

Requires:

Examples:
set cog phase(10,10);

See Also:
setup_cog(), set_cog _dead band(), set cog blanking(), cog_status(), cog restart()

set compare time()

Syntax:
set_compare_time(x, time])
[pco] Set_compare_time(x, ocr, [ocrs]])

Parameters:
X - is 1-8 and defines which output compare module to set time for.

time - is the compare time for the primary compare register.
[PCD]

X - is 1-16 and defines which output compare module to set time for.
ocr - is the compare time for the primary compare register.

ocrs - is the optional compare time for the secondary register. Used for dual compare
mode.

Returns:

452

Built-in Functions

Function:

This function sets the compare value for the CCP module.

rep] This function sets the compare value for the output compare module. If the output
compare module is to perform only a single compare than the ocrs register is not used.
If the output compare module is using double compare to generate an output pulse, the
ocr signifies the start of the pulse and ocrs defines the pulse termination time.

Availability:
All devices with a CCP module
eep] All devices with Output Compare modules

Requires:

Example Files:
ex_ccpils.c

rcp] Example File:
// Pin OCl will be set
when
//timer 2 is equal to
0xF000
setup_ timer2 (TMR INTERNAL | TIMER DIV BY 8);
setup compare time(l, O0xF000);
setup compare(l, COMPARE SET ON MATCH | COMPARE TIMERZ2) ;

See Also:
get_capture(), setup_ccpx()
trep] Output Compare

set dedicated adc channel()

Syntax:
set_dedicated_adc_channel(core,channel, [differential]);

Parameters:
core - the dedicated ADC core to setup

channel - the channel assigned to the specified ADC core. Channels are defined in the
device's .h file as follows:

ADC_CHANNEL_ANO

ADC_CHANNEL_AN7

453

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

ADC_CHANNEL_PGA1
ADC_CHANNEL_ANOALT
ADC_CHANNEL_AN1
ADC_CHANNEL_AN18
ADC_CHANNEL_PGA?2
ADC_CHANNEL_AN1ALT
ADC_CHANNEL_AN2
ADC_CHANNEL_AN11
ADC_CHANNEL_VREF_BAND_GAP
ADC_CHANNEL_AN3
ADC_CHANNEL_AN15

Not all of the above defines can be used with all the dedicated ADC cores. Refer to the
device's header for which can be used with each dedicated ADC core.

differential - optional parameter to specify if channel is differential or single-ended.
TRUE is differential and FALSE is single-ended.

Returns:
Undefined

Function:

Sets the channel that will be assigned to the specified dedicated ADC core. Function
does not set the channel that will be read with the next call to read_adc(), use
set_adc_channel() or read_adc() functions to set the channel that will be read.

Availability:
Only dsPIC33EPxxGSxxx family of devices

Requires:

Examples:
setup dedicated adc_ channel (0, ADC_CHANNEL ANO) ;
See Also:

setup _adc(), setup_adc_ports(), set_adc_channel(), read adc(), adc_done(),
setup dedicated adc(), ADC Overview

454

Built-in Functions

set hspwm event() set hspwm secondary event()

Syntax:
set_hs hspwm_event(settings, compare_time);
set_hswpm_secondary_event(settings, compare_time); //if available

Parameter:

settings - special event timer setting or'd with a value from 1 to 16 to set the prescaler.

The following are the settings available for the special event time:
HSPWM_SPECIAL_EVENT_INT_ENABLED
HSPWM_SPECIAL_EVENT_INT_DISABLED

compare_time - the compare time for the special event to occur

Returns:

Function:
Sets the specified High Speed PWM unit.

Availability:

Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXxMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:

See Also:

setup _hspwm _unit(), set_hspwm _phase(), set_hspwm duty(),

setup _hspwm_blanking(), setup_hspwm_trigger(), set_hspwm override(),

get _hspwm_capture(), setup _hspwm_chop_clock(), setup _hspwm_unit _chop clock()
setup _hspwm(), setup _hspwm_secondary()

set hspwm duty()

Syntax:
set_hspwm_duty(duty);
set_hspwm_duty(unit,primary, [secondary];

455

Built-in Functions

Parameters:
duty - A 16-bit constant or variable to set the master duty cycle

unit - The High Speed PWM unit to set.
primary - A 16-bit constant or variable to set the primary duty cycle.

secondary - An optional 16-bit constant or variable to set the secondary duty cycle.
Secondary duty cycle is only used in Independent PWM mode. Not available on all
devices, refer to the device datasheet for availability.

Returns:
Undefined

Function:
Sets the specified High Speed PWM unit.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:

set hspwm duty (0x7FFF) ; //sets the high speed PWM
//master duty cycle
set _hspwm duty(l, Ox3FFF); //sets unit 1's primary duty cycle

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_event(),

setup _hspwm_blanking(), setup_hspwm_trigger(), set_hspwm override(),

get _hspwm capture(), setup _hspwm chop_clock(), setup _hspwm unit_chop clock()
setup _hspwm(), setup _hspwm_secondary()

set hspwm duty adjustment()

Syntax:
set_hspwm_duty adjustment(unit, value);

456

Built-in Functions

Parameters:
unit - The High-Speed PWM unit to set.

value - An int8 value to set the PWM unit's duty cycle adjustment value to.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) duty cycle adjustment register. This is the
value that is added to the duty cycle when the PCI source is active.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
set hspwm duty ajustment (1, 10);

See Also:

setup _hspwm(), setup _hspwm event output X(), setup _hspwm _logic x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm event(),

setup _hspwm _fault(), setup _hspwm current limit(), setup _hspwm feed forward(),
setup _hspwn sync(), set hspwm scaling(), set hspwm overrride(),

set_hspwm phase(), set hspwm duty(), set hspwm period(), set hspwm trigger x(),
get _hspwm feedback(), get hspwm_capture(), get _hspwm_status(),

hspwm _trigger pwm(), hspwm_stop _pwm(), hspwm do_capture(), hspwm_update()

set hspwm override()

Syntax:
set_hspwm_override(unit, setting);

Parameters:
unit - the High Speed PWM unit to override.

settings - the override settings to use. The valid options vary depending on the device.
See the device's .h file for all options. Some typical options include:
HSPWM_FORCE_H_1
HSPWM_FORCE_H_O0

457

Built-in Functions

HSPWM_FORCE_L_1
HSPWM_FORCE_L_0

Returns:
Undefined

Function:
Setup and High Speed PWM override settings.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxXGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup_hspwm override (1,HSPWM FORCE H 1|HSPWM FORCE L 0);

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm _trigger(), get hspwm _capture(),

setup _hspwm chop clock(), setup _hspwm_unit_chop clock(), setup_hspwm(),
setup _hspwm_secondary()

set hspwm_period()
Syntax:
set_hspwm_period(period);
set_hspwm_period(unit, value);

Parameters:
period - An int16 value to set the PWM master period to.

unit - The High-Speed PWM unit to set.
value - An int16 value to set the PWM unit's period to.

Returns:

458

Built-in Functions

Function:
Sets up the High-Speed PWM (HSPWM) period registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:
Examples:

set _hspwm period(0x8000) ; //set master period

set _hspwm period(4,0x9000) ; //set PWM unit 4 period
See Also:

setup _hspwm(), setup_hspwm_event output X(), setup _hspwm logic_ x(),

setup _hspwm _unit(), setup _hspwm _blanking(), setup _hspwm _event(),

setup _hspwm _fault(), setup _hspwm_current_limit(),

setup _hspwm feed forward(), setup hspwn_sync(), set _hspwm_scaling(),
set_hspwm_overrride(), set_hspwm_phase(), set _hspwm duty(),

set_hspwm duty adjustment(), set _hspwm_trigger x(),

get_hspwm feedback(), get hspwm capture(), get _hspwm status(),

hspwm trigger pwm(), hspwm stop pwm(), hspwm do capture(), hspwm update()

set hspwm phase()

Syntax:
set_hspwm_phase(unit, primary, [secondary]);

Parameters:
unit - The High Speed PWM unit to set.

primary - A 16-bit constant or variable to set the primary duty cycle.
secondary - An optional 16-bit constant or variable to set the secondary duty cycle.
Secondary duty cycle is only used in Independent PWM mode. Not available on all

devices, refer to device datasheet for availability.

Returns:
Undefined

Function:
Sets up the specified High Speed PWM unit.

459

Built-in Functions

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
set hspwm(1,0x1000,0x8000);

See Also:

setup _hspwm_unit(), set_hspwm_duty(), set_hspwm_event(), setup_hspwm _blanking(),
setup _hspwm _trigger(), set_hspwm_override(), get _hspwm capture(),

setup _hspwm_chop_clock(), setup _hspwm unit_chop clock()

setup _hspwm(), setup _hspwm_secondary()

set hspwm scaling()

Syntax:
set_hspwm_scaling(period, inc_value);

Parameters:
period - An intl6 value to set the frequency scaling minimum period to.

inc_value - An intl6 value to set the value added to the frequency scaling accumulator
for each PWM clock.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) frequency scaling registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
set hspwm scaling(0x8000, 16);

460

Built-in Functions

See Also:

setup _hspwm(), setup_hspwm_event output x(), setup _hspwm logic x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm event(),

setup _hspwm_fault(), setup _hspwm current_limit(),

setup _hspwm_feed forward(), setup hspwn sync(), set_hspwm_overrride(),
set_hspwm phase(), set hspwm duty(), set hspwm period(),

set_hspwm duty adjustment(), set_hspwm trigger X(),

get _hspwm feedback(), get hspwm capture(), get hspwm status(),

hspwm trigger pwm(),hspwm_stop pwm(), hspwm do_capture(), hspwm update()

set hspwm scaling()

Syntax:

set_hspwm_trigger_a(unit, value);
set_hspwm_trigger_b(unit, value);
set_hspwm_trigger_c(unit, value);

Parameters:
unit - The High-Speed PWM unit to set.

value - An int16 value to set the PWM unit's trigger x register to.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) trigger A, B and C registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
set _hspwm trigger_a(l, 0x1000);

See Also:
setup _hspwm(), setup _hspwm event output X(), setup _hspwm logic x(),
setup _hspwm__unit(),

461

Built-in Functions

setup _hspwm _blanking(), setup _hspwm_event(), setup _hspwm fault(),
setup_hspwm_current_limit(), setup _hspwm feed forward(), setup hspwn_sync(),
set_hspwm_scaling(), set_hspwm overrride(), set_hspwm phase(), set_hspwm_duty(),
set_hspwm period(), set_ hspwm_duty adjustment(), get hspwm_feedback(),

get hspwm capture(), get hspwm_status(), hspwm trigger pwm(),

hspwm_stop pwm(), hspwm _do_capture(), hspwm update()

set input level x()

Syntax:
set_input_level_a(value)
set_input_level_b(value)
set_input_level v(value)
set_input_level_d(value)
set_input_level_e(value)
set_input_level f(value)
set_input_level_g(value)
set_input_level _h(value)
set_input_level_j(value)
set_input_level_k(value)
set_input_level_I(value)

Parameters:
value- is an 8-bit int with each bit representing a bit of the 1/0 port.

Returns:
Undefined

Function:

These functions allow the 1/0O port Input Level Control (INLVLX) registers to be set. Each
bit in the value represents one pin. A 1 sets the corresponding pin's input level to Schmitt
Trigger (ST) level, and a 0 sets the corresponding pin's input level to TTL level.

Availability:
All devices with ODC registers, however not all devices have all I/O ports and not all
devices port's have a corresponding ODC register.

Requires:
Constants are defined in the device's .h file

Examples:

set input level a(0x0); //sets PIN A0 input level to ST and
all other

462

Built-in Functions

//PORTA pins to TTL level

See Also:
output_high(), output low(), output_bit(), output x(), General Purpose 1/O

set motor pwm_duty()

Syntax:
set_motor_pwm_duty(pwm,group,time);

Parameters:
pwm- Defines the pwm module used.

group- Output pair number 1,2 or 3.
time- The value set in the duty cycle register.

Returns:
Void

Function:
Configures the motor control PWM unit duty.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:

set input level a(0xO0); //sets PIN AOQ input level to ST and
all other
//PORTA pins to TTL level

See Also:
get _motor pwm_count(), set_ motor pwm_event(), set_ motor_unit(), setup_motor pwm()

set motor pwm event()

Syntax:
set_motor_pwm_event(pwm,time);
[pcp] Set_motor_pwm_event(pwm,time,[postscale]);

463

Built-in Functions

Parameters:
pwm- Defines the pwm module used.

time- The value in the special event comparator register used for scheduling other
events.

[pcp] postscale- Optional parameter to set the special trigger output postscale (1-16).
Defaults to 1 if not specified.

Returns:
Void

Function:
Configures the PWM event on the motor control unit.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:
set motor pww event (pwm, time);
e set motor pwm event (1,625,2);

See Also:
get_motor pwm_count(), setup_motor pwm(), set motor_unit(), set motor pwm_duty()

set motor unit()

Syntax:
set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);

Parameters:
pwm- Defines the pwm module used

Unit- This will select Unit A or Unit B
options- The mode of the power PWM module. See the devices .h file for all options
active_deadtime- Set the active deadtime for the unit

464

Built-in Functions

inactive_deadtime- Set the inactive deadtime for the unit

Returns:
Void

Function:
Configures the motor control PWM unit.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:

set motor unit (pwm,unit,MPWM INDEPENDENT | MPWM FORCE L 1,
active deadtime,
inactive deadtime);

See Also:
get _motor pwm_count(), set_motor pwm_event(), set_ motor pwm_duty(),
setup_motor _pwm()

set nco accumulator()

Syntax:
set_nco_accumulator(value);

Parameters:
value - The 20-bit value to set the NCO accumulator to.

Returns:

Function:
Used to set the NCO accumulator to a specific value.

Availability:
Devices with a Numerically Controlled Oscillator (NCO) module.

Requires:

465

Built-in Functions

Examples:

set nco_accumulator (500000) ;

See Also:
setup_nco(), get nco_accumulator(), set nco _inc_value(), get nco _inc_value()

set nco inc value()

Syntax:
set_nco_inc_value(value);

Parameters:
value- value to set the NCO increment registers

Returns:
Undefined

Function:

Sets the value that the NCO's accumulator will be incremented by on each clock pulse.
The increment registers are double buffered so the new value won't be applied until the
accumulator rolls-over.

Availability:
Devices with a NCO module

Requires:

Examples:

set nco_inc value (inc_value); //sets the new increment
value

See Also:
setup_nco(), get nco _accumulator(), get nco _inc_value()

set open drain x(value)

Syntax:

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)

466

Built-in Functions

set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)
set_open_drain_k(value)

Parameters:
value — is an 8-bit int with each bit representing a bit of the 1/0 port.
[pcp] value — is a 16-bit int with each bit representing a bit of the 1/0 port.

Returns:

Function:

These functions allow the I/O port Open-Drain Control (ODCONX) registers to be set. Each bit in
the value represents one pin. A 1 sets the corresponding pin to act as an open-drain output, and a
0 sets the corresponding pin to act as a digital output.

trcp] Enables/Disables open-drain output capability on port pins. Not all ports or port pins have open-drain
capability, refer to devices data sheet for port and pin availability.

Availability:
Devices with a NCO module

Requires:

Examples:

set open drain a(0x01); //makes PIN A0 an open-drain output.
set open drain b (0x001); //enables open-drain output on PIN-BO
//disable on all other port B pins

See Also:
output_high(), output low(), output_bit(), output X(), General Purpose /O

set power pwm override()

Syntax:
set_power_pwm_override(pwm, override, value)

Parameters:

pwm - is a constant between 0 and 7
Override - is true or false

Value -isOor 1

467

Built-in Functions

Returns:
Undefined

Function:
pwm - selects which module will be affected.

Override - determines whether the output is to be determined by the OVDCONS register
or the PDC registers. When override is false, the PDC registers determine the output.
When override is true, the output is determined by the value stored in OVDCONS.

value - determines if pin is driven to it's active staet or if pin will be inactive. | will be
driven to its active state, 0 pin will be inactive.

Availability:
All devices equipped with PWM.

Requires:

Examples:

set power pwm override(l, true, 1); //PWMl will be overridden to
active state
set power pwm override (1, false, 0); //PMW1l will not be overidden

See Also:
setup power pwm(), setup power pwm_pins(), set power pwmX_duty()

set power pwmx duty()

Syntax:
set_power_pwmX_duty(duty)

Parameters:
Xis0,2,4,0or6

Duty is an integer between 0 and 16383

Returns:
Undefined

Function:

Stores the value of duty into the appropriate PDCXL/H register. This duty value is the
amount of time that the PWM output is in the active state.

468

Built-in Functions

Availability:
All devices equipped with PWM.

Requires:

Examples:

set power pwmx duty(4000);

See Also:
setup power _pwm(), setup_power pwm_pins(), set power pwm_override()

set pulldown()

Syntax:
set_Pulldown(state [, pin])

Parameters:
Pins are defined in the devices .h file. If no pin is provided in the function call, then all of
the pins are set to the passed in state.

State is either true or false.

Returns:
Undefined

Function:
Sets the pin's pull down state to the passed in state value. If no pin is included in the
function call, then all valid pins are set to the passed in state.

Availability:
All devices equipped with pull-down hardware

Requires:
Pin constants are defined in the devices .h file

Examples:
set_pulldown (true, PIN BO); //Sets pin BO's pull down state to true
set pullup (false); //Sets all pin's pull down state to
false

469

Built-in Functions

set pullup()

Syntax:
set_pullup(state, [pin])

Parameters:
Pins are defined in the devices .h file. If no pin is provided in the function call, then all of
the pins are set to the passed in state.

State is either true or false.

Pins are defined in the devices .h file. The actual number is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as

follows: #DEFINE PIN_A3 43 . The pin could also be a variable that has a value equal to
one of the predefined pin constants. Note if no pin is provided in the function call, then all
of the pins are set to the passed in state.

Returns:
Undefined

Function:
Sets the pin's pull up state to the passed in state value. If no pin is included in the
function call, then all valid pins are set to the passed in state.

Availability:
All Devices

Requires:
Pin constants are defined in the devices .h file

Examples:
set pullup (true, PIN BO); //Sets pin BO's pull up state to true
set pullup (false); //Sets all pin's pull up state to false

set pwml duty() set pwm?2 duty() set pwm3 duty()
set pwm4 duty() set pwm5 duty()

Syntax:

set_pwml_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)

470

Built-in Functions

set_pwm4_duty (value)
set_pwmb5_duty (value)
pep] set_pwmX_duty (value)

Parameters:
value - may be an 8 or 16 bit constant or variable

Returns:
Undefined

Function:
Writes the 10-bit value to the PWM to set the duty. An 8-bit value may be used if the most
significant bits are not required. The 10 bit value is then used to determine the duty cycle
of the PWM signal as follows:

duty cycle =value /[4 * (PR2 +1)]

If an 8-bit value is used, the duty cycle of the PWM signal is determined as follows:
duty cycle=value/(PR2+1)

Where PR2 is the maximum value timer 2 will count to before toggling the output pin.

irep] PIC24FxxKLxxx devices, writes the 10-bit value to the PWM to set the duty. An 8-bit
value may be used if the most significant bits are not required. The 10-bit value is then
used to determine the duty cycle of the PWM signal as follows:

duty cycle =value /[4 * (PRx +1)]
Where PRXx is the maximum value timer 2 or 4 will count to before rolling over.

PIC24FxxKMxxx devices, wires the 16-bit value to the PWM to set the duty. The 16-bit
value is then used to determine the duty cycle of the PWM signal as follows:

duty cycle=value/(CCPxPRL+1)
Where CCPxPRL is the maximum value timer 2 will count to before toggling the output

pin.

Availability:
This function is only available on devices with CCP/PWM hardware.
ieep] This function is only available on devices with MCCP and/or SCCP modules.

Requires:
Examples:
// For a 20 mhz clock, 1.2 khz
frequency,
// t2DIV set to 16, PR2 set to 200
// the following sets the duty to
50% (or 416 us).

471

Built-in Functions

long duty;

duty = 408; // [408/(4*(200+1))]1=0.5=50%
set pwml duty (duty):;

[PIC24FxxKLxxx Devices]

// 32 MHz clock
unsigned intl6 duty;
setup timer2 (T2 DIV BY 4, 199, 1); //period=50us
setup ccpl (CCP_PWM) ;

duty=400;
//duty=400/14*(199+1) 1=0.5=50%
set pwml duty(duty);

[PIC24FxxKMxxx Devices]
// 32 MHz clock
unsigned intl6é duty;

setup ccpl (CCP_PWM) ;

set timer period ccpl(799); //period=50us

duty=400; //duty=400/(799+1)=0.5=50%
set pwml duty(duty);

Example Files:
ex_pwm.c

See Also:
setup _ccpX(), set_ccpX _compare time(), set_timer_period ccpX(), set_timer_ccpX(),
get_timer _ccpX(), get _capture ccpX(, get captures32 ccpX()

set pwml offset() set pwm2 offset() set pwm3 offset()
set pwm4 offset() set pwmb5 offset() set pwm6 offset()

Syntax:

set_pwml_offset (value)
set_pwm2_offset (value)
set_pwm3_offset (value)
set_pwm4_offset (value)
set_pwmb5_offset (value)
set_pwm6_offset (value)

Parameters:
value - 16-bit constant or variable

472

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Returns:
Undefined

Function:
Writes the 16-bit to the PWM to set the offset. The offset is used to adjust the waveform
of a slae PWM module relative to the waveform of a master PWM module.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml offset (0x0100);
set pwml offset (offset);

See Also:

setup_pwm(), set pwm_duty(), set pwm_period(), clear pwm _interrupt(),
set pwm_phase(), enable pwm _interrupt(), disable pwm interrupt(),
pwm _interrupt_active()

set pwml1l period() set pwm?2 period() set pwm3 period()
set pwm4 period() set pwmb5 period() set pwm6 period()

Syntax:

set_pwml_period (value)
set_pwm2_period (value)
set_pwm3_period (value)
set_pwm4_period (value)
set_pwmb5_period (value)
set_pwm6_period (value)

Parameters:
value - 16-bit constant or variable

Returns:
Undefined

473

Built-in Functions

Function:

Writes the 16-bit to the PWM to set the period. When the PWM module is set-up for
standard mode it sets the period of the PWM signal. When set-up for set on match
mode, it sets the maximum value at which the phase match can occur. When in toggle
on match and center aligned modes it sets the maximum value the PWMxTMR will count
to, the actual period of PWM signal will be twice what the period was set to.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml period(0x8000);
set pwml period(period);

See Also:

setup_pwm(), set_ pwm_duty(), set pwm_phase(), clear pwm interrupt(),
set pwm_offset(), enable pwm _interrupt(), disable pwm interrupt(),
pwm _interrupt_active()

set pwmx phase()

Syntax:

set_pwml_phase (value)
set_pwm2_phase (value)
set_pwm3_phase (value)
set_pwm4_phase (value)
set_pwm5_phase (value)
set_pwm6_phase (value)

Parameters:
value - 16-bit constant or variable

Returns:
Undefined

Function:

Writes the 16-bit to the PWM to set the phase. When the PWM module is set-up for
standard mode the phaes specifies the start of the duty cycle, when in set on match

474

Built-in Functions

mode it specifies when the output goes high, and when in toggle on match mode it
specifies when the output toggles. Phase is not used when in center aligned mode.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:

set pwml phase (0);
set pwml phase (phase);

See Also:

setup_pwm(), set pwm_duty(), set pwm period(), clear pwm _interrupt(),
set_ pwm_offset(), enable _pwm _interrupt(), disable pwm _interrupt(),
pwm_interrupt_active()

set timerx() set rtcc() set timer0O() set timerl()
set timer2() set timer3() set timer4() set timer5()

Syntax:

set_timerX(value)

set_timerO(value) or set_rtcc (value)
set_timerl(value)

set_timer2(value)

set_timer3(value)

set_timer4(value)

set_timer5(value)

Parameters:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit
int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns:
Undefined

475

Built-in Functions

Function:

Sets the count value of a real time clock/counter. RTCC and TimerO are the same. All
timers count up. When a timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...)

Availability:

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Requires:
Examples:
// 20 mhz clock, no prescaler,
//set timer 0 to overflow in 35us
set timer0(81); // 256-(.000035/(4/20000000))

Example Files:
ex_patg.c

See Also:
set_timerl(), get timerX() Timer0 Overview, TimerlOverview, Timer2 Overview, Timer5
Overview

set_ticks()

Syntax:
set_ticks([stream],value);

Parameters:
stream — optional parameter specifying the stream defined in #USE TIMER

value — a 8, 16 or 32 bit integer, specifying the new value of the tick timer. (int8, int16 or
int32)

pcp] Value — a 8, 16, 32 or 64 bit integer, specifying the new value of the tick timer. (int8,
intl6, int32 or int64)

Returns:
Void

476

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
Sets the new value of the tick timer. Size passed depends on the size of the tick timer.

Availability:
All Devices

Requires:
#USE TIMER(options)

Examples:
#USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 value = 0x1000;

set ticks(value);
} // 256-
(.000035/(4/20000000))

See Also:
#USE TIMER, get_ticks()

setup sd adc calibration()

Syntax:
setup_sd_adc_calibration(model);

Parameters:
mode- selects whether to enable or disable calibration mode for the SD ADC module.
The following defines are made in the device's .h file:
SDADC_START_CALIBRATION_MODE
SDADC_END_CALIBRATION_MODE

Returns:

Function:

To enable or disable calibration mode on the Sigma-Delta Analog to Digital Converter
(SD ADC) module. This can be used to determine the offset error of the module, which
then can be subtracted from future readings.

Availability:
Devices with a SD ADC module

477

Built-in Functions

Requires:
#USE TIMER(options)

Examples:
signed int 32 result, calibration;
set sd adc calibration (SDADC START CALIBRATION MODE) ;
calibration=read sd adc()

set sd adc calibration (SDADC END CALIBRATION MODE) ;

result=read sd adc()-calibration;

See Also:
setup_sd_adc(), read_sd_adc(), set_sd _adc_channel()

set sd adc channel()

Syntax:
setup_sd_adc(channel);

Parameters:
channel- sets the SD ADC channel to read. Channel can be 0 to read the difference
between CHO+ and CHO-, 1 to read the difference between CH1+ and CH1-, or one of
the following:

SDADC_CHI1SE_SVSS

SDADC_REFERENCE

Returns:

Void

Function:

To select the channel that the Sigma-Delta Analog to Digital Converter (SD ADC)
performs the conversion on.

Availability:
Devices with a SD ADC module

Requires:

Examples:

set sd _adc_channel (0);

478

Built-in Functions

See Also:
setup_sd adc(), read sd adc(), set sd _adc calibration()

set slow slew x()

Syntax:

set_slow_slew_a(value);
set_slow_slew_b(value);
set_slow_slew_c(value);
set_slow_slew_d(value);
set_slow_slew_e(value);
set_slow_slew_f(value);
set_slow_slew_g(value);
set_slow_slew_h(value);

Parameters:

value - may be a 1-bit constant or an 8-bit value (see the device's header file to
determine which) used to enable and disable slew rating limiting on a port or port pin.
Devices that take a 1-bit constant passing a 1 to function enables slew rate limiting on
entire port. Passing a 0 to function disables slew rate limiting on entire port. Devices that
take an 8-bit value, each bit corresponds to a pin on the port. Setting a bit enables slew
rate limiting on that port's corresponding pin and clearing a bit disables slew rate limiting
on that port's corresponding pin.

Returns:

Function:
Used to enable and disable slew rate limiting on the device's ports or port pins.

Availability:
Devices that have Slew Rate Control registers for enabling and disabling slew rate
limiting.

Requires:

Examples:

set slow slew a(TRUE);
set slow slew a(0x03);

479

Built-in Functions

See Also:

set_tris_x(), set_input_level x(), set_open_drain_x(), get _tris_x(), output_x(), input_x(),
input_change x(), port x_pullups(), input(), input_state(), output_low(), output _high(),
output_toggle(), output_bit(), output_float(), output_drive()

set timerA()

Syntax:
set_timerA(value);

Parameters:
An 8 bit integer. Specifying the new value of the timer. (int8)

Returns:

Function:
Sets the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...)

Availability:
Devices with Timer A hardware

Requires:

Examples:

// 20 mhz clock, no prescaler, set
timer A

// to overflow in 35us
set timerA(81); // 256-(.000035/(4/20000000)

See Also:
get timerA(), setup timer A(), TimerA Overview

set timerB()

Syntax:
set_timerB(value);

Parameters:
An 8 bit integer. Specifying the new value of the timer. (int8)

480

Built-in Functions

Returns:

Function:
Sets the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...)

Availability:
Devices with Timer B hardware

Requires:

Examples:

// 20 mhz clock, no prescaler, set
timer B

// to overflow in 35us
set timerB(81); // 256-(.000035/(4/20000000)

See Also:
get _timerB(), setup timer B(), TimerB Overview

set timerxy()

Syntax:
set_timerXY(value)

Parameters:
A 32 bit integer, specifying the new value of the timer. (int32)

Returns:

Function:
Retrieves the 32 bit value of the timers X and Y, specified by XY(which may be 23, 45, 67
and 89)

Availability:

This function is available on all devices that have a valid 32 bit enabled timers. Timers 2
& 3,4&5,6 &7 and8 &9 may be used. The target device must have one of these timer
sets. The target timers must be enabled as 32 bit.

481

Built-in Functions

Requires:

Examples:

if (get timer45() == THRESHOLD)
set timer (THRESHOLD + 0x1000); //skip those timer
values

See Also:
Timer Overview, setup _timerX(), get timerXY(), set_timerX(), set_timerxY()

set timer ccpl() set timer ccp2() set timer ccp3()
set timer ccp4() set timer ccp5() set timer ccp6()
Syntax:

set_timer_ccpx(time);

set_timer_ccpx(timeL, timeH);

Parameters:
time - may be a 32-bit constant or variable. Sets the timer value for the CCPx module
when in 32-bit mode.

timeL - may be a 16-bit constant or variable to set the value of the lower timer when CCP
module is set for 16-bit mode.

timeH - may be a 16-bit constant or variable to set the value of the upper timer when
CCP module is set for 16-bit mode.

Returns:

Function:
This function sets the timer values for the CCP module. TimeH is optional parameter
when using 16-bit mode, defaults to zero if not specified.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires:

Examples:

482

Built-in Functions

setup_ccpl (CCP_TIMER) ; //set for dual timer mode
set timer ccpl(100,200); //set lower timer value to 100 and upper
timer

//value to 200

See Also:
set pwmX_ duty(), setup ccpX(), set ccpX compare time(), get _capture ccpX(),
set_timer _period ccpX(), get _timer _ccpx(), get _captures32 ccpX()

set timer _period ccpl() set timer period ccp2()
set timer _period ccp3() set timer period ccp4()
set timer period ccp5() set timer period ccp6()
Syntax:

set_timer_period_ccpx(time);
set_timer_period_ccpx(timeL, timeH);

Parameters:
time - may be a 32-bit constant or variable. Sets the timer value for the CCPx module
when in 32-bit mode.

timeL - may be a 16-bit constant or variable to set the value of the lower timer when CCP
module is set for 16-bit mode.

timeH - may be a 16-bit constant or variable to set the value of the upper timer when
CCP module is set for 16-bit mode.

Returns:

Function:

This function sets the timer periods for the CCP module. When setting up CCP module
in 32-bit function is only needed when using Timer mode. Period register are not used
when module is setup for 32-bit compare mode, period is always OXFFFFFFFF. TimeH is
optional parameter when using 16-bit mode, default to zero if not specified.

Availability:
Available only on PIC24FxxKMxxx family of devices with a MCCP and/or SCCP modules.

Requires:

483

Built-in Functions

Examples:

setup_ ccpl (CCP_TIMER) ; //set for dual timer mode
set timer period ccpl(800,2000); //set lower timer period to 800 and
//upper timer period to 2000

See Also:
set pwmX_duty(), setup ccpX(), set_ccpX compare time(), set timer _ccpX(),
get timer _ccpX(), get capture ccpX(), get captures32 ccpX()

set_tris()

Syntax:
set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)
set_tris_| (value)

Parameters:
value is an 8 bit int with each bit representing a bit of the 1/0 port.
pcp] Value is an 16 bit int with each bit representing a bit of the 1/O port.

Returns:
Undefined

Function:

These functions allow the I/O port direction (TRI-State) registers to be set.

This must be used with FAST_1O and when I/O ports are accessed as memory such as
when a # BYTE directive is used to access an 1/O port.

rep] This must be used with FAST_IO and when 1/O ports are accessed as memory such
as when a #word directive is used to access an 1/O port.

Using the default standard 1/O the built in functions set the I/O direction automatically.
Each bit in the value represents one pin. A 1 indicates the pin is input and a O indicates it
is output.

Availability:
All devices (however not all devices have all I/O ports)

484

Built-in Functions

Requires:
Pin constants are defined in the devices .h file

Examples:

SET _TRIS B(O0x0F); // B7,B6,B5,B4 are outputs
// B3,B2,Bl,B0 are inputs
[eco; // B15,B14,B13,B12,B11,B10,B9,BS8,

Example Files:
lcd.c

See Also:
#USE FAST 10, #USE FIXED 10, #USE STANDARD 10, General Purpose /O

set uart speed()

Syntax:
set_uart_speed (baud, [stream, clock])

Parameters:
baud - is a constant representing the number of bits per second.

stream - is an optional stream identifier.

clock - is an optional parameter to indicate what the current clock is if it is different from
the #use delay value

Returns:

Function:
Changes the baud rate of the built-in hardware RS232 serial port at run-time.

Availability:
This function is only available on devices with a built in UART

Requires:
#USE RS232

Examples:
// Set baud rate based on setting
// of pins B0 and Bl
switch(input b() & 3) {

485

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 : set uart speed(19200); break;

}

Example Files:
loader.c

See Also:
#USE RS232, putc(), getc(), setup uart(), RS232 1/0 Overview

setimp()
Syntax:
result = setimp (env)

Parameters:
env - The data object that will receive the current environment

Returns:

If the return is from a direct invocation, this function returns 0.

If the return is from a call to the longjmp function, the setjmp function returns a nonzero
value and it's the same value passed to the longjmp function.

Function:
Stores information on the current calling context in a data object of type jmp_buf and
which marks where you want control to pass on a corresponding longjmp call.

Availability:
All Devices

Requires:
#INCLUDE <setjmp.h>

Examples:

result = setjmp (jmpbuf) ;

See Also:

longjmp()

486

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup act()

Syntax:
setup_act(settings);

Parameters:
settings - to setup the ACT module. See the device's header file for options.

Returns:

Function:
Used to setup the Active Clock Tuning (ACT) module.

Availability:
Devices with an ACT module. See the device's header file for availability.

Requires:

Examples:

setup act (ACT_ENABLED | ACT_TUNED TO USE);

See Also:

act statusg !
setup adc(mode)

iecp] Ssetup adc2(mode)

Syntax:
setup_adc (mode, [ADCRS], [ADRPTY]);
[pcp] Setup_adc2(mode);

Parameters:
mode- Analog to digital mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:
ADC_OFF
ADC_CLOCK_INTERNAL
ADC_CLOCK_DIV_32
treo) ADC_CLOCK _INTERNAL — The ADC will use an internal clock
ireo] ADC_CLOCK_DIV_32 — The ADC will use the external clock scaled down by
32
ireco] ADC_TAD_MUL_16 — The ADC sample time will be 16 times the ADC
conversion time

487

Built-in Functions

ADCRS - For devices with an analog-to-digital converter with computation (ADC2)
module only. Optional parameter used set how much the accumulated value is divided
by (2*ADCRS) in Accumulate, Average and Parst Average modes, and the cut-off
frequency in low-pass filter mode.

ADRPT - For devices with an ADC2 module only. Optional parameter used to set the
number of samples to be done before performing a threshold comparison in Average,
Bust Average and low-pass filter modes.

Returns:

Function:

Configures the analog to digital converter.

e Configures the ADC clock speed and the ADC sample time. The ADC converters
have a maximum speed of operation, so ADC clock needs to be scaled accordingly. In
addition, the sample time can be set by using a bitwise OR to concatenate the constant
to the argument.

Availability:
Only the devices with built in analog to digital converter.

Requires:
Constants are defined in the devices .h file.

Examples:

setup adc ports(ALL ANALOG);
setup adc (ADC CLOCK INTERNAL) ;
set _adc_channel(0);

value = read adc();

setup_adc(ADC OFF)

Example Files:
ex_admm.c

See Also:
setup_adc_ports(), set adc_channel(), read adc(), #DEVICE, ADC Overview

488

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup adc ports()

ipcp] setup adc ports2()

Syntax:

setup_adc_ports (value)

setup_adc_ports (ports, [reference])
setup_adc_ports (ports, [ports2], [reference])
setup_adc_ports (ports, [p2_ports], [reference])
lpcp] Setup_adc_ports (ports, reference])

Parameters:
value - a constant defined in the device's .h file

ports - a constant specifying the ADC pins to use.

ports2 - an optional constant on devices with more than 32 analog pins. To specify the
ADC pins to use for analog pins 32-x.

p2_ports - an optional constant specifying the ADC pins to use on a device that have
more than 32 analog pins. Not an option on all devices, see the device's header file to
determine if available. For devices with this option, if setting ADC reference, the
reference is passed as the third parameter.

reference - is an optional constant specifying the ADC reference to use. By default, the
reference voltage are Vss and vVdd

Returns:

Function:
Sets up the ADC pins to be analog, digital, or a combination and the voltage reference to
use when computing the ADC value. The allowed analog pin combinations vary
depending on the chip and are defined by using the bitwise OR to concatenate selected
pins together. Check the device include file for a complete list of available pins and
reference voltage settings. The constants ALL_ANALOG and NO_ANALOGS are valid
for all chips.
Some other example pin definitions are:

sAN1 | sAN2 - AN1 and AN2 are analog, remaining pins are digital

SANO | SAN3 - ANO and AN3 are analog, remaining pins are digital

Availability:

This function is only available on devices with A/D hardware.
This function is only available on devices with built-in A/D converters

489

Built-in Functions

Requires:
Constants are defined in the devices .h file.

Examples:

setup_adc_ports (ALL ANALOG) ; // All pins analog (that can
be)

setup adc ports (RA0O_RAl ANALOG RA3 REF); // Pins A0 and Al are analog.
Pin RA3 1is
// used for the reference
voltage and all
// other pins are digital.

setup_adc_ports (ALL ANALOG) ; // Set all ADC pins to analog
mode.
setup adc ports (sANO|sAN1|sAN3); // Pins ANO, ANl and AN3 are

analog and all
// others pins are digital.
setup_adc_ports (sANO|sAN1l, VREF VDD); // Pins ANO and ANl are analog.
The Vrefl pin
// and vdd are used for voltage
references.

Example Files:
ex_admm.c

See Also:
setup _adc reference(), set _adc _channel(), read adc(), setup _adc(), set_analog_pins(),
ADC Overview

setup adc reference() setup adc reference2()

Syntax:
setup_adc_reference(reference)

Parameters:
reference - the voltage reference to set the ADC. The valid options depend on the
device, see the device's .h file for all options. Typical options include:
-VSS VDD
-VSS_VREF
- VREF_VREF
- VREF_VDD

Returns:
Undefined.

490

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:
Set the positive and negative voltage reference for the Analog to Digital Converter
(ADC) uses.

Availability:
Only on devices with an ADC and has ANSELX, x being the port letter; registers for
setting which pins are analog or digital.

Requires:
Nothing

Examples:
setup_adc reference (VSS_VREF) ;

Examples Files:
None

See Also:
set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(), setup_adc_ports(),
ADC Overview

setup adc reference() setup adc reference2()

Syntax:
setup_adc_reference(reference)

Parameters:
reference - the voltage reference to set the ADC. The valid options depend on the
device, see the device's .h file for all options. Typical options include:
-VSS VDD
-VSS_VREF
- VREF_VREF
- VREF_VDD

Returns:
Undefined.

Function:
Set the positive and negative voltage reference for the Analog to Digital Converter
(ADC) uses.

491

Built-in Functions

Availability:
Only on devices with an ADC and has ANSELX, x being the port letter; registers for
setting which pins are analog or digital.

Requires:
Nothing

Examples:
setup_adc reference (VSS_VREF) ;

Examples Files:
None

See Also:
set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(), setup_adc_ports(),
ADC Overview

setup_at()

Syntax:
setup_at(settings)

Parameters:
settings - the setup of the AT module. See the device's header file for all options.
Some typical options include:

at_enabled

at_disabled

at_multi_pulse_mode

at_single_pulse_mode

Returns:

Function:
To setup the Angular Timer (AT) module.

Availability:
All devices with an AT module

Requires:
Constants defined in the device's .h file

492

Built-in Functions

Examples:
setup_at (AT ENABLED|AT MULTI PULSE MODE|AT INPUT ATIN);

See Also:

at_set_resolution(), at_get resolution(), at_set_missing_pulse delay(),

at_get missing_pulse delay(), at_get_period(), at_get phase counter(),

at_set set point(), at get set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_set compare _time(), at_get capture(), at_get status()

setup capture()

Syntax:
setup_capture(x, mode)

Parameters:
X - is 1-16 and defines which input capture module is being configured

mode - is defined by the constants in the devices .h file

Returns:

Function:
This function specifies how the input capture module is going to function based on the
value of mode. The device specific options are listed in the device .h file

Availability:
Only available on devices with Input Capture modules

Requires:

Examples:
setup_timer3 (TMR INTERNAL | TMR DIV BY 8);
setup capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {
timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: %LU”, timerValue);

493

Built-in Functions

See Also:
get capture(), setup _compare(), Input Capture Overview

setup _ccpl() setup ccp2() setup ccp3() setup _ccp4()
setup ccp5() setup ccp6() setup ccp8() setup ccp9()
setup ccpl0()

Syntax:

setup_ccpl (mode) or setup_ccpl (mode, pwm)

setup_ccp2 (mode) or setup_ccp2 (mode, pwm)

setup_ccp3 (mode) or setup_ccp3 (mode, pwm)

setup_ccp5 (mode) or setup_ccp5 (mode, pwm)

setup_ccp6 (mode) or setup_ccp6 (mode, pwm)

pep] setup_ccpx(mode,[pwm]);//PIC24FxxKLxxx devices

pep] setup_ccpx(model,[mode2],[mode3],[dead_time]);//PIC24FxxKMxxx devices

Parameters:
mode - is a constant. Valid constants are defined in the devices .h file and refer to
devices .h file for all options; some options are as follows:

Disable the CCP

CCP_CAPUTURE_FE Capture on falling edge
CCP_CAPUTURE_RE Capture on rising edge
CCP_CAPUTURE_DIV_4 Capture after 4 pulses
CCP_CAPUTURE_DIV_16 Capture after 16 pulses

Set CCP to Capture Mode:

CCP_CAPUTURE_SET_ON_MATCH Output high on compare
CCP_CAPUTURE_CLR_ON_MATCH Output low on compare
CCP_CAPUTURE_INT Interrupt on compare
CCP_CAPUTURE_RESET_TIMER Reset timer on compare

Set to CCP to PWM Mode:
CCP_PWM Enable Pulse Width Modulator

Constants used for ECCP Modules:
CCP_PWM _H H
CCP_PWM H L
CCP_PWM_L H
CCP_PWM_L L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

494

CCP_SHUTDOWN_ON_COMP1
CCP_SHUTDOWN_ON_COMP2
CCP_SHUTDOWN_ON_COMP
CCP_SHUTDOWN_ON_INTO
CCP_SHUTDOWN_ON_COMP1_INTO
CCP_SHUTDOWN_ON_COMP2_INTO
CCP_SHUTDOWN_ON_COMP_INTO
change

CCP_SHUTDOWN_AC_L
CCP_SHUTDOWN_AC_H
CCP_SHUTDOWN_AC_F

CCP_SHUTDOWN_BD L
CCP_SHUTDOWN_BD_H
CCP_SHUTDOWN_BD_F

CCP_SHUTDOWN_RESTART
CCP_DELAY

Built-in Functions

Shutdown on Comparator 1 change
Shutdown on Comparator 2 change
Either Comparator 1 or 2 change
VIL on INT pin
VIL on INT pin or Comparator 1 change
VIL on INT pin or Comparator 2 change
VIL on INT pin or Comparator 1 or 2

Drive pins A and C high
Drive pins A and C low
Drive pins A and D tri-state

Drive pins B and D high
Drive pins B and D low
Drive pins B and D tri-state

Device restart after a shutdown event

Use the deadband delay

pwm parameter - is an optional parameter for chips that includes ECCP module. This

parameter allows setting the shutdown time.

The value may be 0-255.

irecp] mode and model - constants used for setting up the CCP module. Valid constants
are defined in the device's .h file; refer to the device's .h file for all options. Some typical

options are as follows:

CCP_OFF
CCP_COMPARE_INT_AND_TOGGLE
CCP_COMPARE_FE
CCP_COMPARE_RE
CCP_COMPARE_DIV_4
CCP_COMPARE_DIV_16
CCP_COMPARE_SET_ON_MATCH
CCP_COMPARE_CLR_ON_MATCH
CCP_COMPARE_INT
CCP_COMPARE_RESET_TIMER
CCP_PWM

rco] mode?2 is an optional parameter for setting up more settings of the CCP module.
Valid constants are defined in the device's .h file, refer to the device's .h file for all

options.

495

Built-in Functions

pcp] mode3 is an optional parameter for setting up more settings of the CCP module.
Valid constants are defined in the device's .h file, refer to the device's .h file for all
options.

[pcp] pwm is an optional parameter for devices that have an ECCP module. this
parameter allows setting the shutdown time. The value may be 0-255.

rep] dead_time is an optional parameter for setting the dead time when the CCP module
is operating in PWM mode with complementary outputs. The value may be 0-63, O is the
default setting if not specified.

Returns:

Function:

Initialize the CCP. The CCP counters may be accessed using the long variables CCP_1
and CCP_2. The CCP operates in 3 modes. In capture mode it will copy the timer 1 count
value to CCP_x when the input pin event occurs. In compare mode it will trigger an action
when timer 1 and CCP_x are equal. In PWM mode it will generate a square wave. The
PCW wizard will help to set the correct mode and timer settings for a particular
application.

ieep] Initializes the CCP module. For PIC24FxxKLxxx devices the CCP module can
operate in three modes (Capture, Compare or PWM).

Capture Mode - the value of Timer 3 is copied to the CCPRxH and CCPRXxI registers
when an input event occurs.

Compare Mode - will trigger an action when Timer 3 and the CCPRxL and CCPRxH
registers are equal.

PWM Mode - will generate a square wave, the duty cycle of the signal can be adjusted
using the CCPRXxL register and the DCxB bits of the CCPxCON register. The function
set_pwmx_duty() is provided for setting the duty cycle when in PWM mode.

PIC24FxxKMxxx devices, the CCP module can operate in four mode (Timer, Caputure,
Compare or PWM). IN Timer mode, it functions as a timer. The module has to basic
modes, it can functions as two independent 16-bit timers/counters or as a single 32-bit
timer/counter. The mode it operates in is controlled by the option CCP_TIMER_32_BIT,
with the previous options added, the module operates as a single 32-bit timer, and if not
added, it operates as two 16-bit timers. The function set_timer_period_ccpx() is provided
to set the period(s) of the timer, and the functions set_timer_ccpx() and get_timer_ccpx()
are provided to set and get the current value of the timer(s).

496

Built-in Functions

In Capture mode, the value of the timer is captured when an input event occurs, it can
operate in either 16-bit or 32-bit mode. The functions get _capture_ccpx() and
get_capture32_ccpx() are provided to get the last capture value.

In Compare and PWM modes, the value of the timers is c ompared to one or two
compare registers, depending on its mode of operation, to generate a single output
transition or a train of output pulses. For signal output edge modes,
CCP_COMPARE_SET_ON_MATCH, CCP_COMPARE_CLR_ON_MATCH, and
CCP_COMPARE_TOGGLE, the module can operate in 16 or 32-bit mode, all other
modes can only operate in 16-bit mode. However, when in 32-bit mode the timer source
will only rollover when it reaches OXFFFFFFFF or when reset from an external
synchronization source. Therefore, is a period of less than OxFFFFFFFF is needed, as it
requires an external synchronization source to reset the timer. The functions
set_ccpx_compare_time() and set_pwmx_duty() are provided for setting the compare
registers.

Availability:
This function is only available on devices with CCP hardware.
irep] Only on devices with the MCCP and/or SCCP modules.

Requires:
Constants are defined in the devices .h file.

Examples:
setup ccpl (CCP_CAPTURE RE) ;

[PCD]
setup ccpl (CCP_CAPTURE FE);
setup_ccpl (CCP_COMPARE TOGGLE) ;
setup ccpl (CCP_PWM) ;

Example Files:
ex_pwm.c, ex_ccpmp.c, ex_ccpils.c

See Also:
set pwmX_ duty(), set_ccpX_compare time(), set _timer period ccpX(),
set_timer _ccpX(), get_timer_ccpX(), get_capture _ccpX(), get_captures32 _ccpX()

setup clcl() setup clc2() setup clc3() setup clc4()

Syntax:

setup_clci(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);_capture(x, mode)

497

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

Built-in Functions

Parameters:
mode — The mode to setup the Configurable Logic Cell (CLC) module into. See the
device's .h file for all options. Some typical options include:

CLC_ENABLED

CLC_OUTPUT

CLC_MODE_AND_OR

CLC_MODE_OR_XOR

Returns:

Function:

Sets up the CLC module to performed the specified logic. Please refer to the device
datasheet to determine what each input to the CLC module does for the select logic
function

Availability:
Devices with a CLC module

Requires:

Examples:
setup clcl (CLC ENABLED | CLC_MODE AND OR);

See Also:
clex_setup gate(), clex_setup_input()

setup comparator()

Syntax:

setup_comparator (mode)

[pcp] Setup_comparator (comparator, mode);

[Pcp] Setup_comparator (comparator, mode, [blanking _period]);

Parameters:
mode is a constant. Valid constants are in the devices .h file refer to devices .h file for
valid options. Some typical options are as follows:

A0 _A3 Al A2

A0_A2_ Al A2

NC NC Al A2

NC _NC _NC_NC

498

Built-in Functions

AO0_VR_Al_VR
A3_VR_A2_VR
AO0_A2 A1 _A2_OUT_ON_A3 A4
A3_A2_ALl A2

[Pcp] cOmparator - constant specifying which comparator to setup.

pcp] mode - constants specifying the settings to setup the specified comparator. See the
device's .h file for all options. Some typical options include:

CXINB_CXINA

CXINC_CSINA

CXIND_CXINA

CXINB_VREF

CXINC_VREF

CXIND_VREF

COMP_INVERT

COMP_OUTPUT
pco] blanking_period - optional parameter available on devices with an Analog
Comparator with Slope Compensation DAC peripheral. See the device's header file for
availability. It sets the 10-bit blanking period for the comparator following changes to the
DAC output during Change-of-State.

Returns:

Function:
Sets the analog comparator module. The above constants have four parts representing
the inputs: C1-, C1l+, C2-, C2+

rep] Configures the voltage comparator. The voltage comparators allow to compare two
voltages and find the greater of them. The configuration constants for this function
specify the sources for the comparator in the order Cx- and Cx+. The results of the
comparator modules are stored in CxOUT. COMP_INVERT will invert the result of the
comparator and COMP_OUTPUT will output the result to the comparator output pin.

Availability:
This function is only available on devices with an analog comparator.
irep] Devices with a comparator module.

Requires:
Constants are defined in the devices .h file

Examples:
//Sets up two independent
comparators (Cl and C2),

499

Built-in Functions

// Cl uses AQ and A3 as
inputs (- and +), and C2
// uses Al and A2 as inputs
setup comparator (A0 A3 Al A2);
(ecp] setup comparator (1,CXINB CXINA) ; // setup C1
setup comparator (2,CXINB CXINA) ; // setup C2

Example Files:
ex_comp.c

See Also:
Analog Comparator Overview, setup comparator_filter(), setup_comparator _mask(),
setup_comparator_dac(), setup _comparator_slope()

eepjsetup comparator dac()

Syntax:
[pco] Setup_comparator_dac(settings);
[pco] Setup_comparator_dac(settings, [tmode_time], [ss_time]);

Parameters:
[pco] Settings - constants specifying the settings to setup the comparator and DAC. See
the device's header file for defines that can be used with this parameter.

ireo] tmode_time - optional 10-bit value used the set the Transition Mode Duration, value
passed for this parameter should be less the ss-time parameter.

pcp] SS_time - optional 10-bit parameter used to set the time from Start of Transmission
Mode until Steady-State filter is enabled.

Returns:

Function:

rep] Used to setup the common settings for the Analog Comparator with Slope
Compensation DAC peripheral. Some common settings include enabling/disabling the
common DAC module, DAC clock source, comparator filter clock divider, etc.

Availability:

irep] Devices with the High-Speed Analog Comparator with the Slope Compensation DAC
peripheral. See the device's header file to determine if the function is available.

500

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Requires:

Examples:

eep) setup comparator dac (COMP_COMMON DAC ENABLE |
COMP_DAC CLK SRC FPLLO, 85, 138);

See Also:
Analog Comparator Overview, setup _comparator(), setup _comparator_slope(),

dac_write()

setup comparator filter()

Syntax:
[pcp] Setup_comparator (comparator, mode);

Parameters:
[pcb] comparator - constant specifying which comparator filter to setup.

rcp] mode - constants specifying the settings to setup the specified comparator's filter.
See the device's .h file for all options. Some typical options include:

COMP_FILTER_ENABLE

COMP_FILTER_CLK_T3

COMP_FILTER_CLK_T2

COMP_FILTER_CLK_FOSC

COMP_FILTER_CLK_INTERNAL

COMP_FILTER_CLK_DIV_BY_4

COMP_FILTER_CLK_DIV_BY_2

COMP_FILTER_CLK DIV_BY_1

Returns:

Function:
irep] Configures the voltage comparator's digital filter.

Availability:

irep] Devices with a comparator module that has a digital filter. See the device's header
file to determine if the device has a digital filter as part of the comparator module.

501

Built-in Functions

Requires:
Constants are defined in the devices .h file

Examples:

eep) setup comparator filter (1,COMP _FILTER ENABLE |
COMP_FILTER CLK FOSC|COMP FILTER CLK DIV BY 4);

See Also:
Analog Comparator Overview, setup _comparator(), setup_comparator _mask()

setup comparator mask()

Syntax:
[Pcp] Setup_comparator_mask (comparator, mode, [inputl], [input2], [input3]);

Parameters:
[pcp] cCOmparator - constant specifying which comparator filter to setup.

irco] mode - constants specifying the settings to setup the specified comparator's mask
registers. See the device's .h file for all options. Some typical options include:
COMP_MASK_COMP_HIGH
COMP_MASK_COMP_LOW
COMP_MASK_MAI_CONNECTED _TO_OR
COMP_MASK_INVERTED_MAI_CONNECTED_TO_OR
COMP_MASK_MAI_CONNECTED_TO_AND
COMP_MASK_INVERTED_MAI_CONNECTED_TO_AND

[pco] inputl, input2, input3 - optional parameters specifying the inputs to mask. See the
device's .h file for all options. Some typical options include:

COMP_MASK_INPUT_PWM3H

COMP_MASK_INPUT_PWMS3L

COMP_MASK_INPUT_PWM2H

COMP_MASK_INPUT_PWM2L

COMP_MASK_INPUT_PWM1H

COMP_MASK_INPUT_PWM1L

Returns:

Function:
irep] Configures the voltage comparator's output blanking function.

502

Built-in Functions

Availability:

rep] Devices with a comparator module that has a output blanking function. See the
device's header file to determine if the device has an output blanking function as part of
the comparator module.

Requires:
Constants are defined in the devices .h file

Examples:

eco) setup comparator mask(1,COMP _MASK COMP_ LOW |
COMP_MASK MAI CONNECTED TO AND, COMP MASK INPUT PWMIH;

See Also:
Analog Comparator Overview, setup comparator(), setup _comparator filter()

[pcp] Setup_comparator_slope()

Syntax:
[pcp] Setup_comparator_slope(comparator, settings, rate);

Parameters:
pco] cCOmparator - constant specifying which comparator to setup.

[pco] Settings - constants specifying the settings to setup the comparator and DAC. See
the device's header file for defines that can be used with this parameter.

[pco] rate - 16-bit value used to set slope ramp rate, the value is in 12.4 format.

Returns:

Function:
rep] Used to setup the Analog Comparator with Slope Compensation DAC peripheral
slope settings.

Availability:

irep] Devices with the High-Speed Analog Comparator with the Slope Compensation DAC
peripheral. See the device's header file to determine if the function is available.
Requires:

503

Built-in Functions

Examples:

ecp] setup comparator slope (1,COMP_ENABLE SLOPE FUNCTION |
COMP_SLOPE START SIG PWMl TRIG 1 |
COMP_SLOPE STOP B SIG COMP1 |
COMP_SLOPE STOP A SIG PWMl1 TRIG 1, 500000);

See Also:
Analog Comparator Overview, setup comparator(), setup _comparator dac(), dac_ write()

setup comparator Xx()

Syntax:

setup_comparator_1(mode);
setup_comparator_2(mode);
setup_comparator_3(mode);
setup_comparator_4(mode);
setup_comparator_5(mode);
setup_comparator_6(mode);
setup_comparator_7(mode);
setup_comparator_8(mode);

Parameters:
mode - to setup the comparator in. Valid options are device dependent. See the
device's header file for all valid options.

Returns:

Function:
Used to setup one of the Analog Comparator modules.

Availability:
On most devices that have more than three Analog Comparator modules.

Requires:

Examples:

setup comparator 1(CP1 Al AOQ | CP1 INVERT);

504

Built-in Functions

See Also:
setup _comparator(), Analog Comparator

setup compare()

Syntax:
setup_compare(x, mode)

Parameters:
mode - is defined by the constants in the devices .h file

x - is 1-16 and specifies which OC pin to use.

Returns:

Function:
This function specifies how the output compare module is going to function based on the
value of mode. The device specific options are listed in the device .h file.

Availability:
Available only on devices with Output Compare Modules

Requires:

Examples:

// Pin OCl will be set
when timer 2

// is equal to 0xF000
setup timer2 (TMR INTERNAL | TIMER DIV BY 16);
set compare time(l, 0xF000);
setup compare (1, COMPARE SET ON MATCH | COMPARE TIMERZ2) ;

See Also:
set_compare _time(), set pwm_duty(), setup capture(), Output Compare / PWM
Overview

setup counters()

Syntax:
setup_counters (rtcc_state, ps_state)

505

Built-in Functions

Parameters:

rtcc_state - may be one of the constants defined in the devices .h file.
RTCC_INTERNAL
RTCC_EXT L TO_H
RTCC_EXT_H TO L

ps_state - may be one of the constants defined in the devices .h file.
RTCC_DIV_2
RTCC_DIV_4
RTCC_DIV_8
RTCC_DIV_16
RTCC_DIV_32
RTCC_DIV_64
RTCC_DIV_128
RTCC_DIV_256
WDT_18MS
WDT_36MS
WDT_72MS
WDT_144MS
WDT_288MS
WDT_576MS
WDT_1152MS
WDT_2304MS

Returns:

Function:

Sets up the RTCC or WDT. The rtcc_state determines what drives the RTCC. The PS
state sets a prescaler for either the RTCC or WDT. The prescaler will lengthen the cycle
of the indicated counter. If the RTCC prescaler is set the WDT will be set to WDT_18MS.
If the WDT prescaler is set the RTCC is setto RTCC_DIV_1.

This function is provided for compatibility with older versions. setup_timer_0 and
setup_WNDT are the recommended replacements when possible. For PCB devices if an
external RTCC clock is used and a WDT prescaler is used then this function must be
used.

Availability:
All Devices

Requires:
Constants are defined in the devices .h file

506

Built-in Functions
Examples:
setup counters (RTCC INTERNAL, WDT 2304MS);

See Also:
setup wdt(), setup timer 0(), see header file for device selected

setup crc(mode)

Syntax:
setup_crc(polynomial terms)

Parameters:
polynomial - This will setup the actual polynomial in the CRC engine. The power of each
term is passed separated by a comma. 0 is allowed, but ignored. The following define is
added to the device's header file (32-bit CRC Moduel Only), to enable little-endian shift
direction:

CRC_LITTLE_ENDIAN

Returns:

Function:
Configures the CRC engine register with the polynomial.

Availability:
Devices with built in CRC module

Requires:

Examples:

setup crc (12, 5); // CRC Polynomial is X' + x° + 1

3

setup_crc(l6, 15, 3, 1); // CRC Polynomial is X' + x" + x° +

X'+ 1

Example Files:
ex.c

See Also:
crc_init(); crc_calc(); crc_calc8()

507

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup _cog()setup _cog2()

setup_cog3()
setup_cog4()

Syntax:
setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters:
mode- the setup of the COG module. See the device's .h file for all options. Some typical
options include:

COG_ENABLED

COG_DISABLED

COG_CLOCK_HFINTOSC

COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module. See the device's .h
file for all the options. Some typical options include:

COG_AUTO_RESTART

COG_SHUTDOWN_ON_C10UT

COG_SHUTDOWN_ON_C20UT

steering- optional parameter for steering the PWM signal to COG output pins and/or
selecting the COG pins static level. Used when COG is set for steered PWM or
synchronous steered PWM modes. Not available on all devices, see the device's .h file if
available and for all options. Some typical options include:

COG_PULSE_STEERING_A

COG_PULSE_STEERING_B

COG_PULSE_STEERING_C

COG_PULSE_STEERING_D

Returns:

Function:
Sets up the Complementary Output Generator (COG) module, the auto-shutdown feature
of the module and if available steers the signal to the different output pins.

Availability:
Devices with built in COG module

Requires:

508

Built-in Functions

Examples:

setup cog (COG_ENABLED | COG_PWM | COG_FALLING SOURCE PWM3 |
COG_RISING SOURCE PWM3, COG _NO AUTO SHUTDOWN,
COG_PULSE_STEERING A | COG PULSE STEERING B);

See Also:
set _cog dead band(), set cog phase(), set cog blanking(), cog_status(), cog_restart()

setup cwd() setup cwg?2() setup cwg3()

Syntax:
setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters:
mode - the setup of the CWG module. See the device's .h file for all options. Some
typical options include:

CWG_ENABLED

CWG_DISABLED

CWG_OUTPUT_B

CWG_OUTPUT_A

shutdown - the setup for the auto-shutdown feature of CWG module. See the device's
.h file for all the options. Some typical options include:

CWG_AUTO_RESTART

CWG_SHUTDOWN_ON)COMP1

CWG_SHUTDOWN_ON_FLT

CWG_SHUTDOWN_ON_CLC2

dead_time_rising - value specifying the dead time between A and B on the rising edge.
(0-63)

dead_time_rising - value specifying the dead time between A and B on the falling edge.
(0-63)

Returns:

Function:
Sets up the CWG module, the auto-shutdown feature of module and the rising and falling
dead times of the module.

Availability:
Devices with built in CWG module

509

Built-in Functions

Requires:

Examples:

setup cwg (CWG_ENABLED|CWG OUTPUT A|CWG OUTPUT B|CWG INPUT PWM1,CWG SHUTDOWN ON F
LT,60,30);

See Also:
cwg_status(), cwg_restart()

pcp] setup current source()

Syntax:
setup_current_source(mode);

Parameters:
mode - setup the Constant Current Source module. Valid options are device dependent.
See the device's header file for all options.

Returns:

Function:
Used to setup the Constant Current Source module.

Availability:
Devices that have a Constant Current Source module.

Requires:

Examples:

setup current source (CURRENT SOURCE ENABLED | CURRENT SOURCE D5);

setup dac()

Syntax:
setup_dac(mode);
setup_dac2(mode);
setup_dac3(mode);

510

Built-in Functions

setup_dac4(mode);
setup_dac5(mode);
setup_dac6(mode);
setup_dac7(mode);
setup_dac8(mode);
prep] setup_dac(mode, divisor);
pep] setup_dac(module, mode);

Parameters:
mode - The mode to setup the DAC module in. The valid options vary depending on the
device. See the device's header file for all options.

irep] divisor - Divides the provided clock.
irco] module - DAC module setup.

Returns:

Function:
Setup the DAC module.

Availability:
Devices with a digital-to-analog converter (DAC).

Requires:

Examples:
setup dac (DAC_VSS VDD | DAC OUTPUT) ;

reeco) setup dac (DAC_RIGHT ON, 5);
setup dac (1, DAC ON)

See Also:
dac_write, DAC. See header file for selected device.

setup dci()

Syntax:
setup_dci(configuration, data size, rx config, tx config, sample rate);

511

Built-in Functions

Parameters:
configuration - Specifies the configuration the Data Converter Interface should be
initialized into, including the mode of transmission and bus properties. The following
constants may be combined (OR’d) for this parameter:

CODEC_MULTICHANNEL

CODEC_12S- CODEC_AC16

CODEC_AC20- JUSTIFY_DATA: DCI_MASTER

DCI_SLAVE- TRISTATE_BUS- MULTI_DEVICE_BUS

SAMPLE_FALLING_EDGE- SAMPLE_RISING_EDGE

DCI_CLOCK_INPUT- DCI_CLOCK_OUTPUT

data size — Specifies the size of frames and words in the transmission:
DCI_xBIT_WORD: x may be 4 through 16
DCI_xWORD_FRAME: x may be 1 through 16
DCI_xWORD_INTERRUPT: x may be 1 through 4

rx config- Specifies which words of a given frame the DCI module will receive
(commonly used for a multi-channel, shared bus situation)

RECEIVE_SLOTx: x May be 0 through 15

RECEIVE_ALL- RECEIVE_NONE

tx config- Specifies which words of a given frame the DCI module will transmit on.
TRANSMIT_SLOTx: x May be 0 through 15
TRANSMIT _ALL
TRANSMIT _NONE

sample rate - The desired number of frames per second that the DCI module should
produce. Use a numeric value for this parameter. Keep in mind that not all rates are
achievable with a given clock. Consult the device datasheet for more information on
selecting an adequate clock.

Returns:

Function:
Configures the DCI module.

Availability:
Only available on devices with DCI peripheral.

Requires:
Constants are defined in the devices .h file

512

Built-in Functions

Examples:
dci initialize ((I2S_MODE|DCI_MASTER|DCI_ CLOCK OUTPUT|SAMPLE RISING EDGE |UNDERFLO
W_LAST |
MULTI DEVICE BUS,DCI 1WORD FRAME|DCI 16BIT WORD|DCI 2WORD INTERR
UPT,
RECEIVE SLOTO|RECEIVE SLOT1, TRANSMIT SLOTO|TRANSMIT SLOT1, 44100
)i

See Also:
DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(), dci data received()

setup dedicated adc()

Syntax:
setup_dedicated_adc(core, mode);

Parameters:
core - the dedicated ADC core to setup

mode - the mode to setup the dedicated ADC core in. See the device's .h file all options.
Some typical options include:

ADC_DEDICATED_CLOCK_DIV_2

ADC_DEDICATED_CLOCK_DIV_6

ADC_DEDICATED _TAD_MUL 2

ADC_DEDICATED _TAD_MUL 3

Returns:

Function:
Configures one of the dedicated ADC core's clock speed and sample time.
Function should be called after the setup_adc() function.

Availability:
Only available on dsPIC33EPxxGSxxx family of devices.

Requires:
Constants are defined in the devices .h file

Examples:

setup dedicated adc (0,ADC_DEDICATED CLOCK DIV 2|ADC_DEDICATED TA
D MUL_1025)

513

Built-in Functions

See Also:
setup_adc(), setup _adc_ports(), set_adc_channel(), read adc(), adc_done(),
set dedicated adc channel(), ADC Overview

setup _dma()

Syntax:

setup_dma(channel, start_trigger, abort_trigger);
prep] setup_dma(channel, peripheral,mode);

pco] setup_dma(channel, trigger, mode);

Parameters:
channel -The DMA channel to setup.

start_trigger - The trigger source to cause the DMA channel to start the transfer when
HW trigger is enabled. See header file for all possible sources.

abort_trigger - The trigger source to cause the DMA channel to abort the transfer when
HW abort trigger is enabled. See header file for all possible sources.

rep] peripheral - The peripheral that the DMA channel transfers data to and from.
Constants for setting the trigger source are defined in the device's .h file, see header file
for all possible peripherals.

pcp] trigger - The trigger source to cause the DMA channel to start the transfer.
Constants for setting the trigger source are defined in the device's header file, see
header file for all possible sources.

irco] mode - The mode to use for the DMA transfers. Constants for setting the mode are
defined in the device's header file, see header file for all possible options.

Returns:

Function:
Configures the DMA peripheral to copy data from one location to another.

Availability:

Devices that have a DMA peripheral. [pecp) The version of the function depends on the
type of DMA peripheral it has. Use getenv("DMA") to determine the type the device has.
It will return O for no DMA peripheral, 1 for Type 1 and 2 for Type 2. For devices with

514

Built-in Functions

Type 1 uses first version of the function and for devices with Type 2 uses second version
of the function.

Requires:
Examples:
[PCD]
setup dma (0,DMA IN UART1,DMA BYTE); // Type 1
setup dma (0, DMA TRIGGER RDA,DMA BYTE |
DMA RELOAD ADDRESS) ; // Type 2

setup dma(l, DMA TRIGGER RDA, DMA TRIGGER NONE) ;

Example Files:
ex_dma uart rx.c

See Also:
dma_start(), dma_status()

setup dmt()

Syntax:
setup_dmt(mode, max_time, window_time);

Parameters:
mode - This sets if whether the DMT is always enabled or can be enabled and disabled
in software. The following defines are made in the device's header file for setting the
following:
DMT_SOFTWARE // DMT can be enabled and disabled in software.
DMT_ENABLED // DMT is ways enabled.

max_time - A 32-bit constant value for setting the count that causes a DMT event to
occur.

window_time - A 32-bit constant value for setting the count value at which it is possible
to clear the DMT count value.

Returns:

515

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:

Sets up the Deadman Timer (DMT) peripheral. This function does not generate any
assembly code, it only causes the DMT configuration fuses to be set to the specified
values.

Availability:
Only on devices that have the DMT peripheral.

Requires:

Examples:
//Setup DMT peripheral to be enabled and disabled in software
//with a max count of 50000 and can be cleared after count
//reaches 10000.
setup_dmt (DMT_SOFTWARE, 50000, 10000);

See Also:
clear_dmt(), read dmt(), disable dmt(), enable dmt(), dmt status()

setup dsm()

Syntax:

setup_dsm(enable);
setup_dsm2(enable);
setup_dsm3(enable);
setup_dsm4(enable);
setup_dsm(mode, source, carrier);
setup_dsm2(mode, source, carrier);
setup_dsm3(mode, source, carrier);
setup_dsm4(mode, source, carrier);

Parameters:

enable — a 1-bit constant used to enable and disable the DSM module. If 1 is passed as
the parameter, the DSMx module is enabled, and if 0 is passed as the parameter, the
DSM module is disabled.

mode - the mode to setup the DSM module. Valid options vary by device. See the
device's header file for all options.

source - used to set the signal source for the DSM module. Valid options vary by device.
See the device's header file for all options.

516

Built-in Functions

carrier - used to set the high and low level carriers for the DSM module. Valid options
vary by device. See the device's header file for all options.

Returns:

Function:
Used to setup the DSM module.

Availability:
Devices that have a Data Signal Modulator (DSM) module

Requires:

Examples:

setup dsm(DSM_ENABLED, DSM SOURCE U1TX, DSM CARRIER LOW CCP1 |
DSM_CARRIER HIGH CCP2);

See Also:
Data Signal Modulator Overview

setup external memory()

Syntax:
setup_external_memory(mode);

Parameters:
mode - is one or more constants from the device header file OR'ed together.

Returns:

Function:
Sets the mode of the external memory bus.

Availability:
Devices that allow external memory bus.

Requires:
Constants are defined in the devices .h file

517

Built-in Functions

Examples:
setup external memory (EXTMEM WORD WRITE|EXTMEM WAIT 0);
setup external memory (EXTMEM DISABLE) ;

See Also:
WRITE PROGRAM EEPROM() , WRITE PROGRAM MEMORY(), External Memory
Overview

setup high speed adc()

Syntax:
setup_external_memory(mode);

Parameters:
mode - Analog to digital mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:

ADC_OFF

ADC_CLOCK _DIV_1

ADC_HALT_IDLE (The ADC will not run when device is idle)

Returns:

Function:

Configures the High-Speed ADC clock speed and other High-Speed ADC options
including, when the ADC interrupts occurs, the output result format, the conversion order,
whether the ADC pair is sampled sequentially or simultaneously, and whether the
dedicated sample and hold is continuously sampled or samples when a trigger event
occurs.

Availability:
dsPIC33FJxxGSxxx devices

Requires:
Constants are defined in the devices .h file

Examples:
setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc (ADC CLOCK DIV 4);
read high speed adc (0, START AND READ, result);
setup high speed adc (ADC_OFF) ;

518

Built-in Functions

See Also:
setup_high_speed adc pair(), read high speed adc(), high speed adc done()

setup high speed adc pair()

Syntax:
setup_high_speed_adc_pair(pair, mode);

Parameters:
pair — The High-Speed ADC pair number to setup, valid values are 0 to total number of
ADC pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC pair AN2 and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the device. See the
devices .h file for all options. Some typical options include:
INDIVIDUAL_SOFTWARE_TRIGGER
GLOBAL_SOFTWARE_TRIGGER
PWM_PRIMARY_SE_TRIGGER
PWM_GEN1_PRIMARY_TRIGGER
PWM_GEN2_PRIMARY_TRIGGER

Returns:

Function:
Sets up the analog pins and trigger source for the specified ADC pair. Also sets up
whether ADC conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to
digital pins.

Availability:
dsPIC33FJxxGSxxx devices

Requires:
Constants are defined in the devices .h file

Examples:
setup high speed adc_pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc_pair (l,GLOBAL SOFTWARE TRIGGER) ;
setup _high speed adc pair(2,0) //sets AN4 and AN5
as digital pins

519

Built-in Functions

See Also:
setup_high speed adc(), read high speed adc(), high speed adc _done()

setup _hspwm() setup hspwm secondary()

Syntax:
setup_hspwm(mode, value);
setup_hspwm_secondary(mode, value); [fif available

Parameters:
mode - Mode to setup the High Speed PWM module in. The valid options vary
depending on the device. See the device's .h file for all options. Some typical options
include:

HSPWM_ENABLED

HSPWM_HALT_WHEN_IDLE

HSPWM_CLOCK_DIV_1

value - 16-bit constant or variable to specify the time bases period.

Returns:

Function:
Enable the High Speed PWM module and set up the Primary and Secondary Time base
of the module.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
setup hspwm (HSPWM ENABLED | HSPWM CLOCK DIV BY4, 0x8000);

See Also:

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm _blanking(), setup _hspwm trigger(), set_hspwm _override(),

get _hspwm capture(), setup _hspwm chop clock(), setup _hspwm unit_chop clock(),
setup _hspwm_secondary()

520

Built-in Functions

setup hspwm blanking()

Syntax:
setup_hspwm_blanking(unit, settings, delay);

Parameters:
unit - The High Speed PWM unit to set.

settings - Settings to setup the High Speed PWM Leading-Edge Blanking. The valid

options vary depending on the device. See the device's header file for all options.

Some typical options include:
HSPWM_RE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_FE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_RE_PWML_TRIGGERS_LE_BLANKING
HSPWM_FE_PWML_TRIGGERS_LE_BLANKING
HSPWM_LE_BLANKING_APPLIED_TO_FAULT_INPUT
HSPWM_LE_BLANKING_APPLIED_TO_CURRENT_LIMIT_INPUT

delay - 16-bit constant or variable to specify the leading-edge blanking time.

Returns:

Function:
Sets up the analog pins and trigger source for the specified ADC pair. Also sets up
whether ADC conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to
digital pins.

Availability:

Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm blanking (HSPWM RE PWMH TRIGGERS LE BLANKING, 10);

521

Built-in Functions

See Also:

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), set hspwm override(), get _hspwm capture(),

setup _hspwm chop clock(), setup _hspwm_unit_chop clock()

setup _hspwm(), setup_hspwm secondary(), setup high speed adc(),

read high speed adc(), high speed adc _done()

setup hspwm chop clock()

Syntax:
setup_hspwm_chop_clock(settings);

Parameters:
unit - The High Speed PWM unit to set.

settings - a value from 1 to 1024 to set the chop clock divider. Also one of the following
can be or'd with the value:
HSPWM_CHOP_CLK_GENERATOR_ENABLED
HSPWM_CHOP_CLK_GENERATOR_DISABLED

Returns:

Function:
Setup and High Speed PWM Chop Clock Generator and divisor.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm chop clock (HSPWM CHOP_ CLK GENERATOR ENABLED|32);

See Also:

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm _blanking(), setup _hspwm trigger(), set_hspwm _override(),

get _hspwm capture(), setup _hspwm unit_chop clock(), setup _hspwm(),

setup _hspwm_secondary()

522

Built-in Functions

setup hspwm current limit()

Syntax:
setup_hspwm_current_limit(unit, settings);

Parameters:
unit - The High-Speed PWM unit to setup.

settings - An int32 value to setup the PWM Generator Current Limit PCI registers. See
the device's header file for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Current Limit PCI registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup_hswm current limit (1, HSPWM PCI_SRC MASTER PCI10 |
HSPWM ACCEPTANCE QUALIFIER PWM TRIGGERED |
HSPWM TERMINATION QUALIFIER DUTY CYCLE |
HSPWM_PCI_ACCEPTANCE_LATCHED_ANY_EDGE) ;

See Also:

setup _hspwm(), setup _hspwm event output x(), setup _hspwm logic x(),
setup_hspwm_unit(), setup _hspwm _blanking(), setup _hspwm _event(),

setup _hspwm_fault(), setup _hspwm feed forward(), setup hspwn_sync(),

set_hspwm _scaling(), set_hspwm overrride(), set hspwm_phase(),

set_hspwm_duty(), set hspwm_period(), set_hspwm duty adjustment(),

set_hspwm _trigger x(), get_hspwm feedback(), get_hspwm capture(),
get_hspwm_status(), hspwm_trigger pwm(), hspwm_stop pwm(), hspwm do_capture(),
hspwm _update()

523

Built-in Functions

setup hspwm event()

Syntax:
setup_hspwm_event(unit, settings_1, settings_h);

Parameters:
unit - The High-Speed PWM unit to setup.

settings_1 - An int16 constant value to setup the PWM Generator Event low register
settings. See the device's header file for valid defines that can be used with function.

settings_h - An int16 constant value to setup the PWM Generator Event high register
settings. See the device's header file for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Event registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup hswm EVENT (3, HSPWM EVENT TRIGGER EOC |
HSPWM_EVENT_UPDATE_WRITE_TO DUTY CYCLE |
HSPWM_EVENT_ADC_TRIGGER_1_PGxTRIGB_SRC_ENABLED | 30,
HSPWM EVENT INTERRUPT DISABLED |
HSPWM EVENT FEED FORWARD INTERRUPT ENABLED | 10);

See Also:

setup _hspwm(), setup_hspwm_event output X(), setup _hspwm logic x(),

setup _hspwm_unit(), setup _hspwm _blanking(), setup _hspwm_fault(),

setup _hspwm _current_limit(),setup _hspwm feed forward(), setup hspwn sync(),
set_hspwm _scaling(), set _hspwm overrride(), set hspwm_phase(),

set_hspwm_duty(), set_hspwm period(), set hspwm duty adjustment(),

set_hspwm trigger x(), get hspwm feedback(), get hspwm capture(),

get _hspwm_status(), hspwm trigger pwm(), hspwm_stop pwm(), hspwm_ do_capture(),
hspwm _update()

524

Built-in Functions

setup hspwm fault()

Syntax:
setup_hspwm_fault(unit, settings);

Parameters:
unit - The High-Speed PWM unit to setup.

settings - An int32 value to setup the PWM Generator Fault PCI registers. See the
device's header file for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Fault PCI registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup _hswm fault(l, HSPWM PCI SRC MASTER PCI10 |
HSPWM ACCEPTANCE QUALIFIER PWM TRIGGERED |
HSPWM TERMINATION QUALIFIER DUTY CYCLE |
HSPWM PCI_ACCEPTANCE LATCHED ANY EDGE) ;

See Also:

setup _hspwm(), setup _hspwm logic_x(), setup_hspwm unit(), setup _hspwm _blanking(),
setup _hspwm_event(), setup_hspwm _fault(), setup_hspwm _current limit(),

setup _hspwm feed forward(), setup _hspwn_sync(), set_hspwm scaling(),

set_hspwm _overrride(), set hspwm_phase(), set_hspwm_duty(), set hspwm _period(),
set_hspwm duty adjustment(), set_hspwm trigger x(), get hspwm feedback(),

get _hspwm capture(), get _hspwm_status(), hspwm _trigger pwm(),

hspwm_stop _pwm(), hspwm do_capture(), hspwm update()

setup hspwm feed forward()

Syntax:
setup_hspwm_feed_forward(unit, settings);

525

Built-in Functions

Parameters:
unit - The High-Speed PWM unit to setup.

settings - An int32 value to setup the PWM Generator Feed Forward PCI registers. See
the device's header file for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Feed Forward PCI registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup _hswm feed forward(l, HSPWM PCI SRC MASTER PCI10 |
HSPWM ACCEPTANCE QUALIFIER PWM TRIGGERED |
HSPWM TERMINATION QUALIFIER DUTY CYCLE |
HSPWM PCI_ACCEPTANCE_ LATCHED ANY EDGE) ;

See Also:

setup _hspwm(), setup _hspwm event output X(), setup _hspwm _logic x(),
setup _hspwm__unit(),

setup _hspwm_blanking(), setup _hspwm _event(), setup _hspwm _fault(),
setup _hspwm_current_limit(),

setup hspwn sync(), set hspwm scaling(), set hspwm overrride(),
set_hspwm_phase(),

set_hspwm_duty(), set hspwm_period(), set_hspwm duty adjustment(),
set_hspwm_trigger x(),

get _hspwm feedback(), get hspwm_capture(), get_hspwm_status(),
hspwm _trigger pwm(),

hspwm_stop _pwm(), hspwm _do_capture(), hspwm update()

setup hspwm logic x()
Syntax:

setup_hspwm_logic_a(settings);
setup_hspwm_logic_b(settings);

526

Built-in Functions

setup_hspwm_logic_c(settings);
setup_hspwm_logic_d(settings);
setup_hspwm_logic_e(settings);
setup_hspwm_logic_f(settings);

Parameters:
settings - An intl6 value to setup the PWM Logic control to. See the device's header file
for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Logic control registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup hswm logic_a (HSPWM LOGIC SRC1 PWMIH |
HSPWM_LOGIC SRC2_ PWMA4H | HSPWM LOGIC SRC1 OR SRC2 |
HSPWM_LOGIC_ASSIGNED TO_ PWM2);

See Also:

setup _hspwm(), setup_hspwm_event output X(), setup _hspwm _unit(),

setup _hspwm_blanking(), setup _hspwm _event(), setup hspwm _fault(),

setup _hspwm _current_limit(),setup _hspwm feed forward(), setup hspwn sync(),
set_hspwm _scaling(), set _hspwm overrride(), set hspwm_phase(),

set_hspwm_duty(), set hspwm_period(), set_hspwm duty adjustment(),

set_hspwm trigger x(), get hspwm feedback(), get hspwm capture(),

get hspwm_status(), hspwm trigger pwm(), hspwm stop pwm(), hspwm do capture(),
hspwm _update()

setup hspwm sync()

Syntax:
setup_hspwm_sync(unit, settings);

Parameters:
unit - The High-Speed PWM unit to setup.

527

Built-in Functions

settings - An int32 value to setup the PWM Generator Sync PCI registers. See the
device's header file for valid defines that can be used with function.

Returns:

Function:
To setup the High-Speed PWM (HSPWM) Sync PCI registers.

Availability:
On devices that have the HSPWM peripheral with Fine Edge Placement. See the
device's header file to determine if functions are available.

Requires:

Examples:
setup_hswm_sync (1, HSPWM_ PCI_SRC MASTER PCI10 |
HSPWM ACCEPTANCE QUALIFIER PWM RIGGERED |
HSPWM TERMINATION QUALIFIER DUTY CYCLE |
HSPWM PCI ACCEPTANCE LATCHED ANY EDGE) ;

See Also:

setup _hspwm(), setup _hspwm event output X(), setup _hspwm logic x(),
setup_hspwm_unit(), setup _hspwm _blanking(), setup _hspwm _event(),

setup _hspwm_fault(), setup _hspwm _current_limit(),

setup _hspwm _feed forward(), set hspwm_scaling(), set _hspwm _overrride(),
set_hspwm phase(), set hspwm duty(), set hspwm _period(),

set_hspwm duty adjustment(), set_hspwm trigger x(),

get _hspwm feedback(), get hspwm_capture(), get_hspwm_status(),

hspwm trigger pwm(), hspwm stop pwm(), hspwm do capture(), hspwm update(),

setup hspwm trigger()

Syntax:
setup_hspwm_trigger(unit, [start_ delay], [divider], [trigger_value], [strigger_value]);

Parameters:
unit - The High Speed PWM unit to set.

start_delay - Optional value from 0 to 63 specifying then umber of PWM cycles to wait
before generating the first trigger event. For some devices, one of the following may be
optional or'd in with the value:

528

Built-in Functions

HSPWM_COMBINE_PRIMARY_AND_SECONDARY_TRIGGER
HSPWM_SEPERATE_PRIMARY_AND_SECONDARY_TRIGGER

divider - optional value from 1 to 16 specifying the trigger event divisor.
trigger_value - optional 16-bit value specifying the primary trigger compare time.
strigger_value - optional 16-bit value specifying the secondary trigger compare time.

Returns:

Function:
Sets up the High Speed PWM Trigger event.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:

Examples:
setup hspwm trigger(l, 10, 1, 0x2000);

See Also:

setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_trigger(), set hspwm_ override(), get_hspwm capture(),

setup _hspwm_chop_clock(), setup _hspwm_unit_chop clock(), setup_hspwm(),
setup _hspwm_secondary()

setup hspwm unit()

Syntax:
setup_hspwm_unit(unit, mode, [dead_time], [alt_dead_time]);
set_hspwm_duty(unit, primary, [secondary]);

Parameters:
unit - The High Speed PWM unit to set.

mode - Mode to setup the High Speed PWM unit in. The valid option vary depending on
the device. See the device's header file for all options. Some typical options include:
HSPWM_ENABLE

529

Built-in Functions

HSPWM_ENABLE_H
HSPWM_ENABLE_L
HSPWM_COMPLEMENTARY
HSPWM_PUSH_PULL

dead_time - Optional 16-bit constant or variable to specify the dead time for this PWM
unit, defaults to 0 if not specified.

alt_dead_time - Optional 16-bit constant or variable to specify the alternate dead time for
this PWM unit, default to O if not specified.

Returns:

Function:
Sets up the specified High Speed PWM unit.

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
setup hspwm unit (1, HSPWM ENABLE|SHPWM COMPLEMENTARY, 100,100);

See Also:

set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(), setup_hspwm_blanking(),
setup _hspwm _trigger(), set_hspwm_override(), get_hspwm capture(),

setup _hspwm _chop clock(), setup_hspwm _unit chop clock(),

setup _hspwm(), setup _hspwm_secondary()

setup hspwm unit chop clock()

Syntax:
setup_hspwm_unit_chop_clock(unit, settings);

Parameters:
unit - the High Speed PWM unit chop clock to setup.

530

Built-in Functions

settings - a settings to setup the High Speed PWM unit chop clock. The valid options
vary depending on the device. See the device's .h file for all options. Some typical
options include:
HSPWM_PWMH_CHOPPING_ENABLED
HSPWM_PWML_CHOPPING_ENABLED
HSPWM_CHOPPING_DISABLED
HSPWM_CLOP_CLK_SOURCE_PWM2H
HSPWM_CLOP_CLK_SOURCE_PWM1H
HSPWM_CHOP_CLK_SOURCE_CHOP_CLK_GENERATOR

Returns:

Function:
Setup and High Speed PWM unit's Chop Clock

Availability:
Only on devices with a built-in High Speed PWM module (dsPIC33FJIxxGSxxX,
dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx, and dsPIC33EVxxxGMxxx devices)

Requires:
Constants are defined in the device's .h file

Examples:
setup _hspwm unit chop clock (1, HSPWM PWMH CHOPPING ENABLED|
HSPWM PWML CHOPPIJNG ENABLED|
HSPWM CLOP CLK SOURCE PWM2H) ;

See Also:

setup _hspwm _unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm trigger(), set_hspwm _override(),

get _hspwm capture(), setup _hspwm chop clock(), setup _hspwm(),

setup _hspwm_secondary()

setup lcd()

Syntax:
setup_lcd (mode, prescale, [segments0_31],[segments32_47]);

Parameters:
mode - may be any of the following constants to enable the LCD and may be or'ed with other
constants in the devices *.h file:

LCD_DISABLED, LCD_STATIC, LCD_MUX12, LCD_MUX13, LCD_MUX14

531

Built-in Functions

prescale - may be 1-16 for the LCD clock.

segments0-31 - may be any of the following constants or'ed together when using the PIC16C92X
series of chips::
SEGO0_4, SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEG20_26, SEG27_28, SEG29_31
ALL_LCD_PINS

When using the PIC16F/LF1xxx or PIC18F/LFxxxx series of chips, each of the segments are
enabled individually. A value of 1 will enable the segment, 0 will disable it and use the pin for
normal 1/0 operation.

segments 32-47 - when using a chip with more than 32 segments, this enables segments 32-47.
A value 1 will enable the segment, 0 will disable it. Bit O corresponds to segment 32 and bit 15
corresponds to segment 47.

Returns:

Function:
Initialize the LCD Driver Module on the PIC16C92X and PIC16F/LF193X series of
devices.

Availability:
Only on devices with built-in LCD Driver Module hardware.

Requires:
Constants are defined in the devices .h file

Examples:

setup lcd(LCD MUX14|LCD STOP ON SLEEP,2,ALL LCD PINS);
// PIC16C92X

setup lcd (LCD_MUX13|LCD REF ENABLED|LCD B HIGH POWER, 0, O0xFF0429)
// PICl6F/LF193X -
//Enables Segments
//0,3,5,10,16,17,18,

19,20,21,22,23

Example Files:
ex_92lcd.c

See Also:
Icd symbol(), lcd load(), lcd contrast(), Internal LCD Overview

532

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

setup low volt detect()

Syntax:
setup_low_volt_detect(mode)

Parameters:
mode may be one of the constants defined in the devices .h file.
LVD_LVDIN
LVD_45
LVD_ 42
LVD_40
LVD_38
LVD_36
LVvD_35
LvD_33
LvD_30
LvD_28
LvD_27
LVD_25
LVD_23
LVD 21
LVD_19
One of the following may be or'ed(via |) with the above if high voltage detect is also
available in the device
LVD_TRIGGER_BELOW
LVD_TRIGGER_ABOVE

Returns:

Function:

This function controls the high/low voltage detect module in the device. The mode
constants specifies the voltage trip point and a direction of change from that point
(available only if high voltage detect module is included in the device). If the device
experiences a change past the trip point in the specified direction the interrupt flag is set
and if the interrupt is enabled the execution branches to the interrupt service routine.

Availability:
Only available with devices that have the high/low voltage detect module.

Requires:
Constants are defined in the devices .h file

533

Built-in Functions

Examples:
setup low volt detect(LVD TRIGGER BELOW | LVD 36); //This
would trigger the
//interrupt
when the voltage
//1is below

3.6 volts

setup motor pwm()

Syntax:
setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Parameters:
pwm - Defines the pwm module used.

Options - The mode of the power PWM module. See the devices .h file for all options
timebase - This parameter sets up the PWM time base pre-scale and post-scale.
prescale - This will select the PWM timebase prescale setting

postscale - This will select the PWM timebase postscale setting

Returns:

Function:
Configures the motor control PWM module.

Availability:
Devices that have the motor control PWM unit.

Requires:

Examples:
setup motor pwm(l,MPWM FREE RUN | MPWM SYNC OVERRIDES,
timebase) ;

See Also:
get motor pwm count(), set motor pwm event(), set motor unit(), set motor pwm duty()

534

Built-in Functions

setup _msi()

Syntax:
setup_msi(settings);

Parameters:

settings - Setting to setup the MSI peripheral in. The available options depend on
whether the program is for the Master or Slave core of the device. See the device's
header file for valid defines that can be used with the function.

Returns:

Function:
Sets up the Master Slave Interface (MSI).

Availability:
Only available on Dual Core devices.

Requires:

Examples:
//Setup MSI to enable the Slave PIC, interrupt when lst write to
//FIFO is done by other core, enable write FIFO and enable read FIFO.
setup msi (MSI_SLAVE ENABLE | MSI FIFO DATA VALID INT ON 1ST WRITE |
MSI_WRITE FIFO ENABLED | MSI READ FIFO ENABLED) ;

See Also:
msi_write_mailbox(), msi_read mailbox(), msi_status(), msi_read_fifo(),
msi_mailbox_status(),msi_write fifo(), msi_fifo status()

setup nco()

Syntax:
setup_nco(settings,inc_value)

Parameters:
settings - setup of the NCO module. See the device's .h file for all options. Some typical
options include:

NCO_ENABLE

NCO_OUTPUT

NCO_PULSE_FREQ_MODE

NCO_FIXED_DUTY_MODE

535

Built-in Functions

inc_value - value to increment the NCO 20 bit accumulator by.

Returns:

Function:
Sets up the NCO module and sets the value to increment the 20-bit accumulator by.

Availability:
Devices with a NCO module.

Requires:

Examples:
setup_nco (NCO_ENABLED|NCO_ OUTPUT|NCO_ FIXED DUTY MODE|NCO CLOCK F
0SsC,8192) ;

See Also:
get nco_accumulator(), set nco _inc_value(), get nco _inc_value()

setup opampl() setup opamp?2() setup opamp3()
setup _opamp4()

Syntax:

setup_opampl(mode)
setup_opamp2(mode)
setup_opamp3(mode)
setup_opamp4(mode)

Parameters:
mode - The mode of the operation amplifier. See the devices .h file for all options.
Some typical options include:

OPAMP_ENABLED

OPAMP_DISABLED

Returns:

Function:
Enables or Disables the internal operational amplifier peripheral of certain devices.

536

Built-in Functions

Availability:
Devices with a built-in operational amplifier (for example, PIC16F785)

Requires:

Examples:
setup opampl (OPAMP ENABLED) ;
setup opamp2 (OPAMP DISABLED) ;
|

setup opamp3 (OPAMP ENABLED | OPAMP_I TO_ OUTPUT) ;

setup opampl() setup opamp?2() setup opamp3()
setup_opamp4()

Syntax:

setup_opampl(mode)
setup_opamp2(mode)
setup_opamp3(mode)
setup_opamp4(mode)

Parameters:
mode - The mode of the operation amplifier. See the devices .h file for all options.
Some typical options include:

OPAMP_ENABLED

OPAMP_DISABLED

Returns:

Function:
Enables or Disables the internal operational amplifier peripheral of certain devices.

Availability:
Devices with a built-in operational amplifier (for example, PIC16F785)

Requires:

Examples:
setup opampl (OPAMP ENABLED) ;
setup opamp2 (OPAMP DISABLED) ;
|

setup opamp3 (OPAMP ENABLED | OPAMP_I TO_ OUTPUT) ;

537

Built-in Functions

setup oscillator()

Syntax:
setup_oscillator(mode, finetune)

Parameters:

mode - is dependent on the chip. For example, some chips allow speed setting such as
OSC _8MHZ or OSC_32KHZ. Other chips permit changing the source like
OSC_TIMERL.

finetune - (only allowed on certain parts) is a signed int with a range of -31 to +31.

Returns:
Some devices return a state such as OSC_STATE_STABLE to indicate the oscillator is
stable.

Function:
This function controls and returns the state of the internal RC oscillator on some parts.
See the devices .h file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses and a #USE DELAY is used for a
valid speed option, then the compiler will do this setup automatically at the start of main().

WARNING: If the speed is changed at run time the compiler may not generate the correct
delays for some built in functions. The last #USE DELAY encountered in the file is always
assumed to be the correct speed. You can have multiple #USE DELAY lines to control
the compilers knowledge about the speed.

Availability:
Devices with a OSCCON register.

Requires:
Constants are defined in the .hfile.

Examples:
setup oscillator(OSC_2MHZ);

See Also:
#FEUSES, Internal oscillator Overview

[PCD]
Syntax:
setup_oscillator(mode, target [,source] [,divide])

538

Built-in Functions

Parameters:

mode - is one of:
OSC_INTERNAL
OSC_CRYSTAL
OSC_CLOCK
OSC_RC
OSC_SECONDARY

target - is the target frequency to run the device it.

source - is optional. It specifies the external crystal/oscillator frequency. If omitted the
value from the last #USE DELAY is used. If mode is OSC_INTERNAL, source is an
optional tune value for the internal oscillator for devices that support it. If omitted a tune
value of zero will be used.

divide in - is optional. For devices that support it, it specifies the divide ration for the
Display Module Interface Clock. A number from O to 64 divides the clock from 1 to 17
increasing in increments of 0.25, a number from 64 to 96 divides the clock from 17 to 33
increasing in increments of 0.5, and a number from 96 to 127 divides the clock from 33 to
64 increasing in increments of 1. If omitted zero will be used for divide by 1.

Returns:

Function:

Configures the oscillator with preset internal and external source configurations. If the
device fuses are set and #use delay() is specified, the compiler will configure the
oscillator. Use this function for explicit configuration or programming dynamic clock
switches. Please consult your target data sheets for valid configurations, especially when
using the PLL multiplier, as many frequency range restrictions are specified.

Availability:
All Devices.

Requires:
Constants are defined in the .h file.

Examples:
setup oscillator(OSC_CRYSTAL, 4000000, 16000000);
setup oscillator(OSC_INTERNAL, 29480000);

See Also:
setup wdt(), Internal Oscillator Overview

539

Built-in Functions

setup _pga()

Syntax:
setup_pga(module,settings)

Parameters:
module - constant specifying the Programmable Gain Amplifier (PGA) to setup.

Returns:

Function:
This function allows for setting up one of the Programmable Gain Amplifier modules.

Availability:
Devices with a Programmable Gain Amplifier module.

Requires:

Examples:

setup_pga (PGA ENABLED | PGA POS INPUT PGAxP1 | PGA GAIN 8X);

setup pid()

Syntax:
setup_pid([mode,[K1],[K2],[K3]);

Parameters:
mode - the setup of the PID module. The options for setting up the module are defined
in the device's header file as:
PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_SIGNED_ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED
PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if not specified.
The K1 coefficient is used in the PID and ADD_MULTIPLY modes. When in PID mode
the K1 coefficient can be calculated with the following formula:

K1=Kp+Ki*T+Kd/T

540

Built-in Functions

When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if not specified.
The K2 coefficient is used in the PID mode only and is calculated with the following
formula:

K2 = -(Kp + 2Kd/T)

K3 - optional parameter specifying the K3 coefficient, defaults to zero if not specified.
The K3 coefficient is used in the PID mode, only and is calculated with the following
formula:

K3 = Kd/T

T - is the sampling period in the above formulas.

Returns:

Function:
Setup the Proportional Integral Derivative (PID) module, and to set the input coefficients
(K1, K2 and K3).

Availability:
Devices with built in PID module

Requires:
Constants are defined in the device's .h file.

Examples:
setup pid(PID MODE PID, 10, -3, 50);

See Also:
pid get result(), pid read(), pid write(), pid busy()

setup pmp(option,address mask)

Syntax:
setup_pmp(options,address_mask);

Parameters:
options - The mode of the Parallel Master Port that allows to set the Master Port mode,
read-write strobe options and other functionality of the PMPort module. See the device's
.h file for all options. Some typical options include:

PAR_PSP_AUTO_INC

541

Built-in Functions

PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /I Interrupt on read write
PAR_INC_ADDR /I Increment address by 1 every read/write
cycle

PAR_MASTER_MODE_1 /I Master Mode 1

PAR_WAITE4 /I 4 Tcy Wait for data hold after strobe

address_mask - this allows the user to setup the address enable register with a 16-bit
value. This value determines which address lines are active from the available 16
address lines PMAO:PMA15.

Returns:

Function:

Configures various options in the PMP module. The options are present in the device's .h
file and they are used to setup the module. The PMP module is highly configurable and
this function allows users to setup configurations like the Slave module, Interrupt options,
address increment/decrement options, Address enable bits, and various strobe and delay
options.

Availability:
Devices with built in Parallel Master Port module.

Requires:
Constants are defined in the device's .h file.

Examples:
setup psp (PAR_ENABLE | //Sets up Master mode with address
PAR MASTER MODE 1|PAR //lines PMAOQ:PMA7T

STOP IN IDLE, 0x0O0FF);

See Also:

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp_input full(), psp_overflow(), pmp output full(), pmp input full(,
pmp_overflow()

setup power pwm()

Syntax:
setup_power_pwm(modes, postscale, time_base, period, compare,
compare_postscale, dead_time)

542

Built-in Functions

Parameters:

modes - values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_186,
PWM_CLOCK_DIV_64, PWM_CLOCK _DIV_128

PWM_DISABLED, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale - is an integer between 1 and 16. This value sets the PWM time base output
postscale.

time_base - is an integer between 0 and 65535. This is the initial value of the PWM base

period - is an integer between 0 and 4095. The PWM time base is incremented until it
reaches this number.

compare - is an integer between 0 and 255. This is the value that the PWM time base is
compared to, to determine if a special event should be triggered.

compare_postscale - is an integer between 1 and 16. This postscaler affects compare,
the special events trigger.

dead_time - is an integer between 0 and 63. This value specifies the length of an off
period that should be inserted between the going off of a pin and the going on of itis a
complementary pin.

Returns:

Function:
Initializes and configures the motor control Pulse Width Modulation (PWM) module.

543

Built-in Functions

Availability:
Devices with motor control or power PWM module.

Requires:

Examples:

setup_power pwm(PWM CLOCK DIV 4 |PWM FREE RUN|PWM DEAD CLOCK DIV 4,1,100
00,1000,0,1,0);

See Also:
set_power pwm_override(), setup power pwm_pins(), set_power pwmxX_duty()

setup _power pwm faults()

Syntax:
setup_power_pwm_faults(mode);

Parameters:
mode - to setup the Power PWM faults. Valid options vary by device. See the device's
header file for all options.

Returns:

Function:
Used to setup the power PWM faults for the Power Control PWM module.

Availability:
Devices with a Power Control PWM module.

Requires:

Examples:

setup power pwm_ faults (PWM ENABLE FLTA | PWM AUTO CLEAR FLTA);

See Also:
set_power pwm_override(), setup _power pwm_pins(), set power pwmX duty(),
setup_power _pwm()

544

Built-in Functions

setup power pwm pins()

Syntax:
setup_power_pwm_pins(module0,modulel,module2,module3)

Parameters:
For each module (two pins) specify:
PWM_PINS_DISABLED

PWM_ODD_ON
PWM_BOTH_ON'PWM_COMPLEMENTARY
Returns:
Function:

Configures the pins of the Pulse Width Modulation (PWM) device.

Availability:
Devices with motor control or power PWM module.

Requires:

Examples:

setup power pwm pins (PWM PINS DISABLED, PWM PINS DISABLED,
PWM PINS DISABLED,

PWM PINS DISABLED) ;
setup power pwm pins (PWM_COMPLEMENTARY,

PWM COMPLEMENTARY, PWM PINS DISABLED, PWM PINS DISABLED);

See Also:
setup power pwm(), set power pwm override(),set power pwmX_ duty()

setup pragx()

Syntax:

setup_prgl(mode, current, rising_source, falling_source);
setup_prg2(mode, current, rising_source, falling_source);
setup_prg3(mode, current, rising_source, falling_source);
setup_prg4(mode, current, rising_source, falling_source);

545

Built-in Functions

Parameters:
mode - the mode to setup the PRGx module in. The valid options vary depending on the
device. See the device's header file for all options.

current - the current source/sink setting to set the PRGx module to and can be a value
from 0 to 31. When using a value from 0 to 15, the current is calculated as: 2+(current /
2) uUA. When using a value from 16 to 31, the current is calculated as: 10+(current - 16)
UA.

rising_source - used to set the rising timing source. The valid options vary depending
on the device. See the device's header file for all options.

falling_source - used to set the falling timing source. The valid options vary depending
on the device. See the device's header file for all options.

Returns:

Function:
Used to set the PRGx modules.

Availability:
Devices that have a Programmable Ramp Generator (PRG) module.

Requires:

Examples:

setup prgl (PRG_ENABLED | PRG_INPUT SOURCD FVR, 16,
PRG_RISING SOURCE_CCPl, PRG_RISING SOURCE CCP2);

See Also:

prgx_status()

setup psmc()

Syntax:
setup_psmc(unit, mode, period, period_time, rising_edge, rise_time, falling_edge,
fall_time);

Parameters:
unit - is the PSMC unit number 1-4

546

Built-in Functions

mode - is one of:
PSMC_SINGLE
PSMC_PUSH_PULL
PSMC_BRIDGE_PUSH_PULL
PSMC_PULSE_SKIPPING
PSMC_ECCP_BRIDGE_REVERSE
PSMC_ECCP_BRIDGE_FORWARD
PSMC_VARIABLE FREQ
PSMC_3 PHASE

For complementary outputs use a bar (]) and or in PSMC_COMPLEMENTARY

Normally the module is not started until the psmc_pins() call is made. To enable
immediately or in PSMC_ENABLE_NOW.

period - has three parts or'ed together. The clock source, the clock divisor and the
events that can cause the period to start.

Sources:
PSMC_SOURCE_FOSC
PSMC_SOURCE_64MHZ
PSMC_SOURCE_CLK_PIN

Divisors:

PSMC _DIV_1
PSMC _DIV_2
PSMC_DIV_4
PSMC_DIV_8

Events - Use any of the events listed below.

period_time - is the duration the period lasts in ticks. A tick is the above clock source
divided by the divisor.

rising_edge - is any of the following events to trigger when the signal goes active.

rise_time - is the time in ticks that the signal goes active (after the start of the period) if
the event is SMC_EVENT_TIME, otherwise unused.

falling_edge - is any of the following events to trigger when the signal goes inactive.

fall_time - is the time in ticks that the signal goes inactive (after the start of the period) if
the event is PSMC_EVENT_TIME, otherwise unused.

Events:
PSMC_EVENT_TIME

547

Built-in Functions

PSMC_EVENT_C10UT
PSMC_EVENT_C20UT
PSMC_EVENT_C30UT
PSMC_EVENT_C40UT
PSMC_EVENT_PIN_PIN

Returns:

Function:

Initializes a PSMC unit with the primary characteristics such as the type of PWM, the
period, duty and various advanced triggers. Normally this call does not start the PSMC.
It is expected all the setup functions be called and the psmc_pins() be called last to start
the PSMC module. These two calls are all that are required for a simple PWM. The
other functions may be used for advanced settings and to dynamically change the signal.

Availability:
Devices with built in PSMC module.

Requires:

Examples:

//Simple PWM, 10khz out on pin CO assuming a 20mhz crystal
// Duty is initially set to 25%

setup psmc(l, PSMC SINGLE,PSMC EVENT TIME | PSMC SOURCE FOSC, 100,
PSMC EVENT TIME, 0, PSMC EVENT TIME, 25);
psmc_pins (1, PSMC A);

See Also:
psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freq adjust(), psmc_pins()

setup psp(option,address mask)

Syntax:
setup_psp (options,address_mask);
setup_psp(options);

548

Built-in Functions

Parameters:
Option - The mode of the Parallel slave port. This allows to set the slave port mode,
read-write strobe options and other functionality of the PMP/EPMP module. See the
devices .h file for all options. Some typical options include:

PAR_PSP_AUTO_INC

PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /I Interrupt on read write
PAR_INC_ADDR /I Increment address by 1 every read/write
cycle

PAR_WAITE4 /I 4 Tcy Wait for data hold after strobe

address_mask - This allows the user to setup the address enable register with a 16 bit
or 32 bit (EPMP) value. This value determines which address lines are active from the
available 16 address lines PMAQO: PMA15 or 32 address lines PMAO:PMA31 (EPMP

only)

Returns:

Function:

Configures various options in the PMP/EPMP module. The options are present in the
device.h file and they are used to setup the module. The PMP/EPMP module is highly
configurable and this function allows users to setup configurations like the Slave mode,
Interrupt options, address increment/decrement options, Address enable bits and various
strobe and delay options.

Availability:
Devices with Parallel Port module or Enhanced Parallel Master Port module.

Requires:
Constants are defined in the devices .h file.

Examples:
setup psp (PAR_PSP AUTO INC| //Sets up legacy slave mode with
PAR STOP IN IDLE, OxOOFF); //read and write buffers auto
increment

See Also:

psp_output_full(), psp_input_full(), psp_overflow(),
ipcp] setup_pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() , pmp_write()
,omp_output_full() , pmp_input_full() , pmp_overflow()

549

Built-in Functions

setup pwml() setup pwm2() setup pwm3() setup_pwm4()

Syntax:

setup_pwmZl(settings);
setup_pwm2(settings);
setup_pwma3(settings);
setup_pwm4(settings);

Parameters:
settings- setup of the PWM module. See the device's .h file for all options. Some typical
options include:
PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW
Returns:

Function:
Initializes the Pulse Width Modulation (PWM) device.

Availability:
Devices with PWM module.

Requires:

Examples:

setup pwml (PWM ENABLED|PWM OUTPUT) ;

setup gei()

Syntax:
setup_gei(options, filter, maxcount);
pep] setup_gei([unit,Joptions, filter, maxcount);

Parameters:
Options - The mode of the QEI module. See the devices .h file for all options. Some
common options are:

QEI_MODE_X2

QEI_MODE_X4

filter - This parameter is optional, the user can enable the digital filters and specify the
clock divisor.

550

Built-in Functions

maxcount - Specifies the value at which to reset the position counter.

rep] Options- The mode of the QEI module. See the devices .h file for all options. Some
common options are:

QEI_MODE_X2

QEI_TIMER_GATED

QEI_TIMER_DIV_BY_1

ieep] filter - This parameter is optional and the user can specify the digital filter clock
divisor.

ireco] maxcount - This will specify the value at which to reset the position counter.

[pco] Unit - Optional unit number, defaults to 1.
Returns:

Function:
Configures the Quadrature Encoder Interface. Various settings like mode and filters can
be setup.

Availability:
Devices with QEI module.

Requires:

Examples:

setup gei (QEI MODE X2 |QEI RESET WHEN MAXCOUNT,
EI_FILTER ENABLE QEA|QEI FILTER DIV 2,0x1000);

[PCD]
setup gei (QEI MODE X2 |QEI TIMER INTERNAL,QEI FILTER DIV 2,QEI FORWARD)

’

See Also:
gei_set count() , gei_get count() , gei_status()

setup rtc()

Syntax:
setup_rtc(options, calibration);

551

Built-in Functions

[pcp] setup_rtc(options, period, stability_time, sample_time); //RTCC with Timestamp

Parameters:
Options- The mode of the RTCC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value that will
get written to the calibration configuration register.

rep] Period - RTCC with Timestamp, sets the period of the clock divider counter. Value
should be set to achieve a period of 0.5 seconds.

rep] Stability_time - RTCC with Timestamp, sets the Power Control Stability Time (2-
255). This parameter is optional.

irco] Sample_time - RTCC with Timestamp, sets the Power Control Sample Time
Window (2-255). This parameter is optional.
Returns:

Function:
Configures the Real Time Clock and Calendar module. The module requires an external
32.768 kHz clock crystal for operation.

Availability:
Devices with RTCC module.

Requires:

Examples:

setup rtc(RTC ENABLE | RTC OUTPUT SECONDS, 0x00);
// Enable RTCC module with seconds clock and no
calibration

[pep] setup rtc (RTC_ENABLE|RTC CLOCK SOSC, 16383);
// Enable RTCC with Timestamp module from an external
32.768Khz crystal

See Also:
ric_read(), rtc_alarm_read(), rtc_alarm_write(), setup _rtc_alarm(), rtc_write(, setup_rtc()

552

Built-in Functions

setup rtc alarm()

Syntax:
setup_rtc_alarm(options, mask, repeat);

Parameters:
options - The mode of the RTCC module. See the devices .h file for all options

mask - specifies the alarm mask bits for the alarm configuration.

repeat - Specifies the number of times the alarm will repeat. It can have a max value of
255.

Returns:

Function:
Configures the alarm of the RTCC module.

Availability:
Devices with RTCC module.

Requires:

Examples:

setup_rtc_alarm(RTC_ALARM ENABLE, RTC_ALARM HOUR, 3);

See Also:
ric_read(), rtc_alarm_read(), ric_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

setup sd adc()

Syntax:
setup_sd_adc(settings1, settings 2, settings3);

Parameters:
settings1 - settings for the SD1CONL1 register of the SD ADC module. See the device's
.h file for all options. Some options include:

1 SDADC_ENABLED

2 SDADC_NO_HALT

3 SDADC_GAIN_1

4 SDADC_NO_DITHER

553

Built-in Functions

5 SDADC_SVDD_SVSS
6 SDADC_BW_NORMAL

settings?2 - settings for the SD1CON2 register of the SD ADC module. See the device's
.h file for all options. Some options include:

7 SDADC_CHOPPING_ENABLED

8 SDADC_INT_EVERY_SAMPLE

9 SDADC_RES_UPDATED_EVERY_INT

10 SDADC_NO_ROUNDING

settings3 - settings for the SD1CON3 register of the SD ADC module. See the device's
.h file for all options. Some options include:

11 SDADC_CLOCK_DIV_1

12 SDADC_OSR_1024

13 SDADC_CLK_SYSTEM

Returns:

Function:
Setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.

Availability:
Devices with SD ADC module.

Requires:

Examples:

setup sd_adc (SDADC_ENABLED | SDADC DITHER LOW, SDADC_ CHOPPING ENABLED |
SDADC_INT EVERY 5TH SAMPLE |SDADC RES UPDATED EVERY INT,
SDADC_CLK_SYSTEM |SDADC CLOCK DIV 4);

See Also:
set sd_adc channel(), read sd adc(), set sd_adc_calibration()

ipcp] setup sent()

Syntax:
setup_sent(module, settings, tick_time);
setup_sent(module, settings, tick_time, [frame_time]);

554

Built-in Functions

Parameters:
module - the SENT peripheral to setup, 1 or 2 for most devices.

settings - the mode to setup the SENT peripheral in. Constants for setting up the
peripheral are defined in the device's header file. See the device's header file for all the
possible options.

tick_time - the tick time to set the SENT peripheral to, value is a time in us from 3 to 90.

fame_time - optional parameter unless peripheral is set-up for transmitter mode and
sent_uses_pause_pulse is used in settings parameter. It is used to set the frame time
in us of the message.

Returns:

Function:
Used to setup the Single-Edge Nibble Transmission (SENT) peripheral.

Availability:
Devices with a SENT peripheral.

Requires:

Examples:

//Setup SENT1 peripheral for asynchronous transmitter

//mode with HW CRC generation enabled, pause pulse

//enabled, and to send 6 data nibbles with a tick time

//90us and a frame time of 50ms.

setup_sent(l, SENT_MODE_TRANSMITTER_ASYNCHRONOUS | SENT_ENABLE_HW_CRC |
SENT USES PAUSE PULSE | SENT DATA NIBBLES 6, 90, 50000);

Example Files:
ex_sent_transmitter.c, ex_sent_receiver.c

See Also:
sent_getd(), sent_putd(), sent_status()

setup smtx()

Syntax:
setup_smtl(mode,[period]);

555

file:///C:/DOCUME~1/Help-Manual%20Files/CCSC

Built-in Functions

setup_smt2(mode,[period]);

Parameters:
mode - The setup of the SMT module. See the device's .h file for all options. Some
typical options include:

SMT_ENABLED

SMT_MODE_TIMER

SMT_MODE_GATED_TIMER

SMT_MODE_PERIOD_DUTY_CYCLE_ACQ

period - Optional parameter for specifying the overflow value of the SMT timer, defaults
to maximum value if not specified.

Returns:

Function:
Configures the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

Requires:

Examples:

setup_ smtl (SMT ENABLED | SMT MODE PERIOD DUTY CYCLE ACQ|
SMT REPEAT DATA ACQ MODE | SMT CLK FOSC) ;

See Also:
smtx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_reset timer(),
smtx read(), smtx write()

setup spi() setup spi2() setup spi3() setup spid()

Syntax:
setup_spi(mode)
setup_spi2(mode)
setup_spi3(mode)
setup_spi4(mode)

Parameters:
mode may be:
SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED

556

Built-in Functions

SPI_L_TO_H, SPI_H_TO L
SPI_CLK_DIV_4, SPI_CLK_DIV_16,
SPI_CLK_DIV_64, SPI_CLK_T2
SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
(pco] SPI_MODE_16B, SPI_XMIT_L_TO_H

Constants from each group may be or'ed together with |

Returns:

Function:

Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire serial devices that

follow a common clock/data protocol.

rep] Configures the hardware SPI™ module.
SPI_MASTER will configure the module as the bus master
SPI_SLAVE will configure the module as a slave on the SPI™ bus
SPI_SS_DISABLED will turn off the slave select pin so the slave module receives
any transmission on the bus.
SPI_x_to_y will specify the clock edge on which to sample and transmit data
SPI_CLK_DIV_x will specify the divisor used to create the SCK clock from system
clock.

Availability:
Devices with SPI hardware module.

Requires:
Constants are defined in the device's .h file

Examples:

setup spi(spi master |spi 1 to h | spi clk div 16);
setup spi (SPI MASTER | SPI L TO H | SPI DIV BY 16);

Example Files:
ex_spi.c

See Also:
spi_write(), spi_read(), spi_data is in(), spi_set txcnt(), SPI Overview

setup timerx()

Syntax:
setup_timerX(mode)
setup_timerX(mode,period)

557

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
mode - is a bit-field comprised of the following configuration constants:
TMR_DISABLED: Disables the timer operation.

TMR_INTERNAL: Enables the timer operation using the system clock. Without
divisions, the timer will increment on every instruction cycle. On PCD, this is half
the oscillator frequency.

TMR_EXTERNAL: Uses a clock source that is connected to the SOSCI/SOSCO
pins

TMR_EXTERNAL_SYNC: Uses a clock source that is connected to the
SOSCI/SOSCO pins. The timer will increment on the rising edge of the external
clock which is synchronized to the internal clock phases. This mode is available
only for Timerl.

TMR_EXTERNAL_RTC: Uses a low power clock source connected to the
SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode is used, the
low power oscillator will be enabled by the setup_timer function. This mode is
available only for Timer1.

TMR_DIV_BY_X: X is the number of input clock cycles to pass before the timer is
incremented. X may be 1, 8, 64 or 256.

TMR_32_BIT: This configuration concatenates the timers into 32 bit mode. This
constant should be used with timers 2, 4, 6 and 8 only.

Period is an optional 16 bit integer parameter that specifies the timer period. The
default value is OXFFFF.

Returns:

Function:
Sets up the timer specified by X (May be 1 —9). X must be a valid timer on the target
device.

Availability:
This function is available on all devices that have a valid timer X. Use getenv or refer to
the target datasheet to determine which timers are valid.

Requires:
Constants are defined in the device's .h file

558

Built-in Functions

Examples:

/* setup a timer that increments every 64th instruction cycle with an
overflow period of 0xA010 */

setup timer2 (TMR INTERNAL | TMR DIV BY 64, 0xA(010);

/* Setup another timer as a 32-bit hybrid with a period of OXFFFFFFFF
and a interrupt that will be fired when that timer overflows*/

setup_ timer4 (TMR 32 BIT); //use get timer45() to get the
timer value
enable interrupts(int timer5); //use the odd number timer for

the interrupt

See Also:
Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

setup timerA()

Syntax:
setup_timer_A (mode);

Parameters:

mode values may be:
TA_OFF, TA_INTERNAL, TA_EXT_H TO_L, TA EXT_L_TO_H
TA_DIV_1, TA_DIV_2, TA DIV_4, TA DIV_8, TA _DIV_16, TA_DIV_32,
TA_DIV_64, TA _DIV_128, TA DIV_256

Constants from different groups may be or'ed together with |.

Returns:

Function:
Sets up Timer A.

Availability:
This function is only available on devices with Timer A hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup timer A(TA OFF);
559

Built-in Functions

setup timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

See Also:
get_timerA(), set_timerA(), TimerA Overview

setup timerB()

Syntax:
setup_timer_B (mode);

Parameters:

mode values may be:
TB_OFF, TB_INTERNAL, TB_ EXT H TO L, TB_EXT L TO H
TB_DIV_1,TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16, TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256

Constants from different groups may be or'ed together with |.

Returns:

Function:
Sets up Timer B.

Availability:
This function is only available on devices with Timer B hardware.

Requires:
Constants are defined in the device's .h file

Examples:
setup timer B(TB_OFF);

setup timer B(TB_INTERNAL | TB DIV 256);
setup_timer B(TA EXT L TO H | TB DIV 1);

See Also:
get_timerB(), set_timerB(), TimerB Overview

setup timer0Q()

Syntax:
setup_timer_0 (mode);

560

Built-in Functions

Parameters:
mode - constants defined in the device's .h file. Some typical defines are:
TO_INTERNAL
TO EXT L TO H
TO _EXT_H_TO |
TO DIV_2,TO DIV_4
(See device's .h file for all possible defines.)

One constant may be used from each group or'ed together with the | operator.

Returns:

Function:
Sets up the timer 0 (aka RTCC).

Availability:
All Devices. (WARNING: On older PIC16 devices, set-up of the prescaler may undo the
WDT prescaler)

Requires:
Constants are defined in the device's .h file

Examples:

setup_timer_o (TO_INTERNAL | TO_DIV2) ;

See Also:
get _timerQ(), set_timer0(), setup counters()

setup timerl()

Syntax:
setup_timer_1 (mode);

Parameters:

mode
T1 DISABLED, T1 INTERNAL, T1_EXTERNAL, T1 EXTERNAL_SYNC
T1_CLK_OUT
T1_DIV_BY_1,T1_DIV_BY_2,T1 DIV_BY 4, T1 DIV_BY_8

One constant may be used from each group or'ed together with the | operator.

561

Built-in Functions

Returns:

Function:
Initializes timer 1. The timer value may be read and written to using SET_TIMERZ1() and
GET_TIMER1()Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer will
increment every 1.6us. It will overflow every 104.8576ms.

Availability:
Available only on devices with timer 1 hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup timer 1 (T1 DISABLED);
setup timer 1 (T1 INTERNAL | T1 DIV BY 4);
setup timer 1 (T1 INTERNAL | T1 DIV BY 8);

See Also:
get timerl(), set timerl() , Timerl Overview

setup timer2()

Syntax:
setup_timer_2 (mode, period, postscale);

Parameters:
mode
T2_DISABLED
T2_DIV_BY_1, T2 DIV_BY_4, T2 _DIV_BY_16

period - is a int 0-255 that determines when the clock value is reset

postscale - is a humber 1-16 that determines how many timer overflows before an interrupt: (1
means once, 2 means twice, an so on).

Returns:

562

Built-in Functions

Function:

Initializes timer 2. The mode specifies the clock divisor (from the oscillator clock). The
timer value may be read and written to using GET_TIMER2() and SET_TIMERZ2(). 2isa
8-bit counter/timer.

Availability:
Available only on devices with timer 2 hardware.

Requires:
Constants are defined in the device's .h file

Examples:

setup_timer 2 (T2 DIV BY 4, 0xc0O, 2) //at 20mhz, the timer will
increment

//every 800ns will overflow
every 154.4us,

//and will interrupt every
308.us

See Also:
get timer2(), set_timer2() , Timer2 Overview

setup timer3()

Syntax:
setup_timer_3 (mode);

Parameters:

mode - may be one of the following constants from each group or'ed (via |) together:
T3_DISABLED, T3_INTERNAL, T3_EXTERNAL, T3_EXTERNAL_SYNC
T3 _DIV_BY_ 1, T3 DIV_BY 2, T3_DIV_BY 4, T3 DIV_BY 8

Returns:

Function:

Initializes timer 3 or 4.The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMERS3() and SET_TIMERS3().
Timer 3 is a 16 bit counter/timer.

Availability:
Available only on devices with timer 3 hardware.

563

Built-in Functions

Requires:
Constants are defined in the device's .h file

Examples:
setupitimer73 (T3_INTERNAL | T3 DIV BY 2);

See Also:
get _timer3(), set_timer3()

setup timer4()

Syntax:
setup_timer_4 (mode);

Parameters:
mode - may be one of:
T4 DISABLED, T4 _DIV_BY_1, T4 DIV_BY_4, T4 DIV_BY_16

period - is a int 0-255 that determines when the clock value is reset

postscale - is a number 1-16 that determines how many timer overflows before an
interrupt: (1 means once, 2 means twice, and so on).

Returns:

Function:

Initializes timer 4. The mode specifies the clock divisor (from the oscillator clock). The
timer value may be read and written to using GET_TIMER4() and SET_TIMER4(). Timer
4 is a 8 bit counter/timer.

Availability:
Available only on devices with timer 4 hardware.

Requires:
Constants are defined in the device's .h file

Examples:
setup_timer 4 (T4 DIV BY 4, 0xc0, 2); // At 20mhz, the timer will
increment

// every 800ns,will overflow
every 153.6us,

564

Built-in Functions

// and will interrupt every
307.2us

See Also:
get _timer4(), set_timer4()

setup timer5()

Syntax:
setup_timer_5 (mode);

Parameters:

mode - may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or T5_EXTERNAL_SYNC
T5 DIV_BY_1,T5 DIV_BY_2,T5 DIV_BY 4, T5 DIV_BY_8
T5 _ONE_SHOT, T5_DISABLE_SE RESET, or T5_ENABLE_DURING_SLEEP

Returns:

Function:

Initializes timer 5. The mode specifies the clock divisor (from the oscillator clock).

The timer value may be read and written to using GET_TIMER5() and SET_TIMERS5().
Timer 5 is a 16 bit counter/timer.

Availability:
Available only on devices with timer 5 hardware.

Requires:
Constants are defined in the device's .h file

Examples:
setup timer 5 (T5 INTERNAL | T5 DIV BY 2);

See Also:
get_timer5(), set_timer5(), Timer5 Overview

setup uart()

Syntax:
setup_uart(baud, stream)
setup_uart(baud)

565

Built-in Functions

setup_uart(baud, stream, clock)

Parameters:
baud - is a constant representing the number of bits per second. A one or zero may also
be passed to control the on/off status.

Stream - is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to
match.
UART_AUTODETECT_NOWAIT Same as above function, except returns before
0x55 is received. KBHIT() will be true when the match is made. A call to GETC()
will clear the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from high
to low

clock - If specified this is the clock rate this function should assume. The default comes
from the #USE DELAY.

Returns:

Function:

Similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is turned on,
and if 0 is passed, UART is turned off. If a BAUD rate is passed to it, the UART is also
turned on, if not already on.

Availability:
Available only on devices with built in UART.

Requires:
#USE RS232

Examples:

setup uart (9600) ;
setup uart (9600, rsOut);

See Also:
#USE RS232, putc(), getc(), RS232 1/0 Overview

566

Built-in Functions

setup vref() setup vref2()

Syntax:

setup_vref (mode | value)

Parameters:

mode - may be one of the following constants:
FALSE (off)

VREF_LOW for VDD*VALUE/24
VREF_HIGH for VDD*VALUE/32 + VDD/4
any may be or'ed with VREF_A2.

value - is an int 0-15.

irco] mode - is a bit-field comprised of the following constants:
VREF_DISABLED
VREF_LOW (Vdd * value / 24)
VREF_HIGH (Vvdd * value / 32 + Vdd/4)
VREF_ANALOG

Returns:

Function:

Establishes the voltage of the internal reference that may be used for analog compares
and/or for output on pin A2.

irep] Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the
comparator module may use. You may use the Vdd and Vss voltages as your reference
or you may specify VREF_ANALOG to use supplied Vdd and Vss. Voltages may also be
tuned to specific values in steps, 0 through 15. That value must be or’ed to the
configuration constants.

Availability:
This function is only available on devices with VREF hardware.
rcp] Some devices, consult the device datasheet.

Requires:
irep] Constants are defined in the devices .h file

Examples:

567

Built-in Functions

setup vref (VREF HIGH | 6);
// At VDD=5, the voltage is 2.19V

ey /* Use the 15th step on the course setting */
setup vref (VREF LOW | 14);

Example Files:
ex_comp.c

See Also:
Voltage Reference Overview

setup_wdt()

Syntax:
setup_wdt (mode)

Parameters:

Constants:
WDT_18MS
WDT_36MS
WDT_72MS
WDT_144MS
WDT_288MS
WDT_576MS
WDT_1152MS
WDT_2304MS

For some parts:
WDT_ON
WDT_OFF

reco] Mode is a bit-field comprised of the following constants:
WDT_ON
WDT_OFF

Specific Time Options vary between chips, some examples are:
WDT_2ms
WDT_64MS
WDT_1S
WDT_16S

Returns:

568

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:

Setup-wdt is used to set the timer that is allowed between calls to restart-wdt () before
the chip is reset. Some parts also allow the wdt to be enabled/disabled and to run time
by this function. Some parts do not allow the time to be changed at run time. The
watchdog timer is used to cause a hardware reset if the software appears to be stuck.
The timer must be enabled, the timeout time set and software must periodically restart
the timer.

Note: For PCH parts and PCM parts with software controlled WDT, setup_wdt() would
enable/disable watchdog timer only if NOWDT fuse is set. If WDT fuse is set, watchdog
timer is always enabled.

Note: WDT_OFF should not be used with any other options.
Warning: Some chips share the same prescaller between the WDT and TimerO. In these
cases a call to setup_wdt may disable the Timer0O prescaller.

e Configures the watchdog timer. The watchdog timer is used to monitor the software.
If the software does not reset the watchdog timer before it overflows, the device is reset,
preventing the device from hanging until a manual reset is initiated. The watchdog timer
is derived from the slow internal timer.

Availability:
All Devices (WARNING: On older PIC16 devices, set-up of the prescaler may undo the
timerQ prescaler)

Requires:
Constants are defined in the devices .h file

Examples:

#fuses WDT1, WDT // PIC18 example, See restart wdt for a
PIC18 example
main () |
setup_wdt (WDT_18MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

(pep] setup wdt (WDT ON) ;

569

Built-in Functions

Example Files:
[pcp] €x_wdt.c

See Also:
#EUSES , restart wdt() , WDT or Watch Dog Timer Overview , Internal Oscillator
Overview

setup zcd()

Syntax:
setup_zdc(mode);

Parameters:
mode- the setup of the ZDC module. The options for setting up the module include:
ZCD_ENABLED
ZCD_DISABLED
ZCD_INVERTED
ZCD_INT_L TO H
ZCD_INT_H_TO L

Returns:

Function:
Set-up the Zero_Cross Detection (ZCD) module.

Availability:
Devices with a ZCD module.

Requires:

Examples:

setup zcd(ZCD_ENABLE|ZCD INT H TO L);

See Also:

zcd_status()

570

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

shift_left()

Syntax:
shift_left (address, bytes, value)

Parameters:
address - is a pointer to memory.

bytes - is a count of the number of bytes to work with
value - is a 0 to 1 to be shifted in.

Returns:
0 or 1 for the bit shifted out

Function:

Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated as the
LSB.

Availability:
All Devices.

Requires:

Examples:

byte buffer([3];

for (i=0; 1i<=24; ++1i){ // Wait for clock high
while (!input(PIN _A2));
shift left (buffer, 3, input (PIN_A3)); // Wait for clock low
while (input (PIN_A2));
} // reads 24 bits from pin

A3,each bit
//is read on a low to high on
pin A2

Example Files:
ex_extee.c, 9356.c

See Also:
shift_right(), rotate right(), rotate left()

571

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

shift right()

Syntax:
shift_right (address, bytes, value)

Parameters:
address - is a pointer to memory.

bytes - is a count of the number of bytes to work with
value - is a 0 to 1 to be shifted in.

Returns:
0 or 1 for the bit shifted out

Function:

Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated as the
LSB.

Availability:
All Devices.

Requires:

Examples:

//reads 16 bits from pin Al,
each bit is read
// on a low to high on pin A2
struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=16; ++i) {

while (!input (PIN AZ2));

shift right (&msg, 3, input (PIN _Al));

while (input(PIN A2)) ;} // This shifts 8 bits out PIN AQ,
LSB first.
for (1i=0;1<8;++1)

output bit (PIN AQ0,shift right(&data,1,0));

572

Built-in Functions

Example Files:
ex_extee.c, 9356.c

See Also:
shift_left(), rotate right(), rotate left()

slee

Syntax:
sleep(mode)

Parameters:
mode - for most chips this is not used. Check the device header for special options on
some chips.

ircp] mode configures what sleep mode to enter, mode is optional. If mode is
SLEEP_IDLE, the PIC will stop executing code but the peripherals will still be operational.
If mode is SLEEP_FULL, the PIC will stop executing code and the peripherals will stop
being clocked, peripherals that do not need a clock or are using an external clock will still
be operational. SLEEP_FULL will reduce power consumption the most. If no parameter
is specified, SLEEP_FULL will be used.

Returns:

Function:

Issues a SLEEP instruction. Details are device dependent. However, in general the part
will enter low power mode and halt program execution until woken by specific external
events. Depending on the cause of the wake up execution may continue after the sleep
instruction. The compiler inserts a sleep() after the last statement in main().

Availability:
All Devices.

Requires:

Examples:

SLEEP () ;
[PCD]

disable interrupts (INT GLOBAL) ;

enable interrupt (INT_EXT);

clear interrupt();

sleep (SLEEP_FULL) ; //sleep until an INT EXT interrupt

573

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

//after INT EXT wake-up,
//will resume operation from this point

Example Files:
ex_wakup.c

See Also:

reset cpu()

sleep ulpwu()

Syntax:
sleep_ulpwu(time)

Parameters:
time - specifies how long, in us, to charge the capacitor on the ultra-low power wakeup
pin (by outputting a high on PIN_AOQ).

ipep] time - specifies how long, in us, to charge the capacitor on the ultra-low power
wakeup pin (by outputting a high on PIN_BO).

Returns:

Function:

Charges the ultra-low power wake-up capacitor on PIN_AO for time microseconds, and
then puts the PIC to sleep. The PIC will then wake-up on an ‘Interrupt-on-Change' after
the charge on the cap is lost.

irep] Charges the ultra-low power wake-up capacitor on PIN_BO for time microseconds,
and then puts the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change'
after the charge on the cap is lost.

Availability:
Devices with Ultra Low Power Wake-Up.
Requires:
Examples:
while (TRUE)
{ if (input (PIN_Al)) //PCD devices use (PIN BO)

574

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

//do something

else
sleep ulpwu(1l0); //cap will be charged for 10us,
//then goto sleep
}
See Also:
#USE DELAY

smtx read()

Syntax:
value_smtl_read(which);
value_smt2_read(which);

Parameters:
which - Specifies which SMT registers to read. The following defines have been made in
the device's header file to select which registers are read:
SMT_CAPTURED_PERIOD _REG
SMT_CAPTURED_PULSE_WIDTH_REG
SMT_TMR_REG
SMT_PERIOD_REG

Returns:
32-bit value

Function:
Read the Capture Period Registers, Capture Pulse Width Registers, Timer Registers or
Period Registers of the Signal Measurement Timer module.

Availability:
Devices with SMT module.

Requires:

Examples:

unsigned int32 Period;
Period = smtl read(SMT_CAPTURED PERIOD REG);

See Also:
smtx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_reset timer(),
setup SMTXx(), smtx_write()

575

Built-in Functions

smtx reset timer()

Syntax:
smtl_reset_timer();
smt2_reset_timer();

Parameters:

Function:
Manually reset the Timer Register of the Signal Measurement Timer module.

Availability:
Devices with SMT module.

Requires:

Examples:

smtl reset timer();

See Also:
setup_smtx(), stmx_start(), smtx_stop(), smix_update(), smtx_status(), smtx_read(),

smtx_write()

smtx start()

Syntax:
smtl_start();
smt2_start();

Parameters:

Function:
Allow the Signal Measurement Timer (SMT) module start acquiring data.

576

Availability:
Devices with SMT module.

Requires:

Examples:

smtl start();

See Also:

Built-in Functions

smtx_status(), setup smtx(), smtx_stop(), smtx _update(), smtx_reset timer(),

smtx_read(), smtx_write()

smtx status()

Syntax:
value = smtl_status();
value = smt2_status();

Parameters:

Returns:
The status of the SMT module.

Function:

Return the status of the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

Requires:

Examples:

status = smtl status();

See Also:
setup_smix(), stmx_start(), smtx_stop(), smtx update(),
smtx_reset_timer(),smtx_read(), smtx_write()

577

Built-in Functions

smtx stop()

Syntax:
smtl_stop();
smt2_stop();

Parameters:

Function:
Configures the Signal Measurement Timer (SMT) module.

Availability:
Devices with SMT module.

Requires:

Examples:

smtl stop();

See Also:
smtx_status(), stmx_start(), setup _smtx(), smtx_update(), smtx_reset timer(),
smtx_read(), smtx_write()

smtx write()

Syntax:
smtl_write(which,value);
smt2_write(which,value);

Parameters:
which - Specifies which SMT registers to write. The following defines have been made
in the device's header file to select which registers are written:

SMT_TMR_REG

SMT_PERIOD_REG

value - The 24-bit value to set the specified registers.

578

Built-in Functions

Returns:

Function:
Write the Timer Registers or Period Registers of the Signal Measurement Timer (SMT)
module.

Availability:
Devices with SMT module.

Requires:

Examples:

smtl write (SMT PERIOD REG, 0x100000000);

See Also:
smtx_status(), stmx_start(), setup smitx(), smtx_update(), smtx reset timer(),
smtx_read(), setup_smtx()

smtx update()

Syntax:
smtl_update(which);
smt2_update(which);

Parameters:
which - Specifies which capture registers to manually update. The following defines
have been made in the device's header file to select which registers are updated:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

Returns:

Function:
Manually update the Capture Period Registers or the Capture Pulse Width Registers of
the Signal Measurement Timer module.

Availability:
Devices with SMT module.

579

Built-in Functions

Requires:

Examples:

smtl update (SMT CAPTURED PERIOD REG);

See Also:
setup_smtx(), stmx_start(), smtx_stop(), smtx_status(), smtx_reset timer(),
smtx_read(), smtx_write()

spi_data is in() spi data is in2()spi data is in3()
spi_data_is_in4()

Syntax:

result = spi_data_is_in()
result = spi_data_is_in2()
result = spi_data_is_in3()
result = spi_data_is_in4()

Parameters:

Returns:
0 (FALSE) or 1 (TRUE)

Function:
Returns TRUE if data has been received over the SPI.

Availability:
Devices with SPI hardware.

Requires:

Examples:

spi_data is in() && input (PIN B2));
if(spi data is in())
data = spi _read();

See Also:
spi_read(), spi_write(), spi_set txcnt(), SPI Overview

580

Built-in Functions

spi init()
Syntax:
spi_init(baud);
Spi_init(stream,baud);

Parameters:
stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

band - the band rate to initialize the SPI module to. If FALSE it will disable the SPI
module, if TRUE it will enable the SPI module to the baud rate specified in #use SPI.
Returns:

Function:
Initializes the SPI module to the settings specified in #USE SPI.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:

while #use spi (MATER, SPI1, baud-1000000, mode=0, stream=SPI1 MODEO)

spi_spi init (SPI1 MODEQO, TRUE); //initialize and
enable

//SPI1 to setting in
#USE SPI1
spi_spi_ init (FALSE); //disable SPI1
spi _spi init (250000); //initialize and

enable SPI1
//to a baud rate of
250K

See Also:
#USE SPI, spi_xfer(), spi_xfer _in(), spi_prewrite(), spi_speed()

spi_prewrite()
Syntax:
spi_prewrite(data);
spi_prewrite(stream, data);

581

Built-in Functions

Parameters:
stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

data - the variable or constant to transfer via SPI
Returns:

Function:

Writes data into the SPI buffer without waiting for transfer to be completed. Can be used
in conjunction with spi_xfer() with no parameters to transfer more then 8 bits for PCM and
PCH device, or more then 8 bits or 16 bits (XFER16 option) for PCD. Function is useful
when using the SSP or SSP2 interrupt service routines for PCM and PCH device, or the
SPIx interrupt service routines for PCD device.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:
spi_ prewrite (data out);

Example Files:
ex_spi.c

See Also:
#USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi read() spi read2() spi read3() spi read4()

lpcp] Spi_read_16()

[pco] Spi_read2_16()
[pco] Spi_read3_16()
lpco] Spi_read4_16()
pcp] Spi_read 32()

pcp] Spi_read2 _32()
[pcp] Spi_read3_32()
[pcp] SPi_read4 _32()

Syntax:
value = spi_read([data])

582

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

value = spi_read2([data])

value = spi_read3([data])

value = spi_read4([data])

ipcp] Value = spi_read_16([data])
ipcp] Value = spi_read2_16([data])
ipcp] Value = spi_read3_16([data])
ipcp] Value = spi_read4_16([data])
ipcp] Value = spi_read_32([data])
ipcp] Value = spi_read2_32([data])
rpep] Value = spi_read3_32([data])
pep] Value = spi_read4_32([data))

Parameters:

data — optional parameter and if included is an 8 bit int.

rcp] data — optional parameter and if included is an 16 bit or 32 bit int.
Returns:

An 8-bit int

irep] A 16-bit or 32-bit int.

Function:

Return a value read by the SPI. If a value is passed to the spi_read() the data will be
clocked out and the data received will be returned. If no data is ready, spi_read() will wait
for the data is a SLAVE or return the last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data) followed by a spi_read() or
do a spi_read(data). These both do the same thing and will generate a clock. If there is
no data to send just do a spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the clock and data or
use_spi_data _is_in() to determine if data is ready.

Availability:
Devices with SPI hardware.
Requires:
Examples:
data in = spi read(out data);

583

Built-in Functions

Example Files:
ex_spi.c

See Also:
spi_write(), spi_data is _in(), spi_set txcnt(), SPI Overview

spi set txcnt()

Syntax:
spi_set_txcnt (count)

Parameters:
count - int16 value indicating number of SPI transfers that SS1 pin will be driver to active
level for.

Returns:
Undefined

Function:

Used to control the number of SPI transfers that the SS1 pin is driven to the active level
for when SPI peripheral is setup as SPI Master. Once the value is written, the SS1 pin

will be driver to the active state. Also requires that the #pin_select be used to assign a
pin as the SS1 output pin.

Availability:
Only on PIC18 devices with a dedicated SPI peripheral.

Requires:

Examples:
#pin select SCK1OUT=PIN CO
#pin select SDO1=PIN Cl1
#pin select SDI1=PIN C2
#pin select SS10UT=PIN C4

setup spi (SPI_MASTER|SPI_SCK IDLE LOW|SPI XMIT L TO H|
SPI_CLK_FOSC,500000) ;

spi_set txcnt(3);
spi_write (WRITE COMMAND) ;
spi_write (Address);
spi_write (Data);

584

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
setup_spi(), spi_write(), spi_read(), spi_data _is_in(), SPI Overivew

spi_speed()

Syntax:

spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);

Parameters:
stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

band - the band rate to set the SPI module to.

clock - the current clock rate to calculate the band rate with. If not specified it uses the
value specified in #use delay().
Returns:

Function:
Sets the SPI module's baud rate to the specified value.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:
spi_speed(250000) ;

spi_speed(SPI1 MODEO, 250000);
spi_ speed(SPI1_MODEO, 125000, 8000000);

See Also:
#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

iecp] Spi transfer write()

Syntax:
spi_transfer_write([stream], data, count);

585

Built-in Functions

Parameters:
stream — an optional parameter specifying the SPI stream to transfer the data with.
Defaults to last used SPI stream in if not specified.

data - the pointer to an array of bytes to transfer via SPI. The pin used to transfer data is
defined in the DO=option in #use SPI.

clock - the number of bytes to transfer via SPI.
Returns:

Function:
Used to transfer multiple bytes to an SPI device.

Availability:
All devices

Requires:
#USE SPI

Examples:

spi_transfer write(Data, 128);

See Also:
#USE SPI, spi_xfer(),

spi write() spi write2() spi write3() spi write4d()

lpco] SPi_write_16()

[pco] SPi_write2_16()
[pco] SPi_write3_16()
[pcp] Spi_writed _16()
lpcp] Spi_write_32()

[pcp] Spi_write2_32()
lpcp] Spi_write3_32()
[pcp] Spi_writed_32()

Syntax:
spi_write([wait],value);
spi_write2([wait],value);
spi_write3([wait],value);
spi_writed([wait],value);

586

Built-in Functions

[pcp] Spi_write_16([wait],value);

[pcp] Spi_write2_16([wait],value);
ipcp] Spi_write3_16([wait],value);
[pcp] Spi_writed 16([wait],value);
pcp] Spi_write_32([wait],value);

[pcp] Spi_write2_32([wait],value);
pcp] Spi_write3_32([wait],value);
[pcp] Spi_writed 32([wait],value);

Parameters:
value - is an 8 bit int
rep] Value - is an 16 bit or 32 bit int

wait- an optional parameter specifying whether the function will wait for the SPI transfer
to complete before exiting. Default is TRUE if not specified.
Returns:

Function:

Sends data out the SPI interface. This will cause clocks to be generated. This function
will write the value out to the SPI. At the same time data is clocked out data is clocked in
and stored in a receive buffer. The spi_read() may be used to read the buffer.

Availability:
Devices with SPI hardware.

Requires:

Examples:

spi write(data out);
data _in = spi read();

Example Files:
ex_spi.c

See Also:
spi_read(), spi_data is _in(), SPI Overview, spi_set_txcnt()

587

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

spi_xfer()

Syntax:

spi_xfer(data)

spi_xfer(stream, data)
spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters:
data - is the variable or constant to transfer via SPI. The pin used to transfer data is
defined in the DO=pin option in #USE SPI.

stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

bits - is how many bits of data will be transferred.

Returns:

The data read in from the SPI. The pin used to transfer result is defined in the DI=pin
option in #USE SPI.

Function:
Transfers data to and reads data from an SPI device.

Availability:
Devices with SPI hardware.

Requires:
#USE SPI

Examples:

int 1 = 34;
spi_xfer(i); // transfers the number 34 via SPI
int trans = 34, res;
res = spi xfer(trans); // transfers the number 34 via SPI
// also reads the number coming in from
SPI

See Also:
#USE SPI

588

Built-in Functions

spi xfer in()

Syntax:

value = spi_xfer_in();

value = spi_xfer_in(bits);

value = spi_xfer_in(stream,bits);

Parameters:
stream - is the SPI stream to use as defined in the STREAM=name option in #USE SPI.

bits - is how many bits of data will be received.
Returns:
The data read in from the SPI.

Function:
Reads data from the SPI, without writing data into the transmit buffer first.

Availability:
Devices with SPI hardware.

Requires:

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave
device.

Examples:

data in = spi xfer in();

Example Files:
ex_spi.c

See Also:
#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax:
sprintf(string, cstring, values...);
bytes=sprintf(string, cstring, values...)

Parameters:
string - is an array of characters.

cstring - is a constant string or an array of characters null terminated.

589

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

values - are a list of variables separated by commas. Note that format specifies do not
work in ram band strings.

Returns:

Bytes is the number of bytes written to string.

Function:

This function operates like printf() except that the output is placed into the specified
string. The output string will be terminated with a null. No checking is done to ensure the
string is large enough for the data. See printf() for details on formatting.

Availability:
All Devices

Requires:

See Also:

printf()

sqrt()

Syntax:
result = sqgrt (value)

Parameters:

value - is a float

pcp] Value - is any float type

Returns:

A float

lrep] Returns a floating point value with a precision equal to value

Function:
Computes the non-negative square root of the float value x. If the argument is negative,
the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable.
The user can check the errno to see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases: sqrt: when the argument is negative

Availability:
All Devices

590

Built-in Functions

Requires:
#INCLUDE <math.h>

Examples:

distance = sqgrt(pow((x1-x2),2)+pow((yl-y2),2));

srand()

Syntax:
srand(n)

Parameters:
n - is the seed for a new sequence of pseudo-random numbers to be returned by
subsequent calls to rand.

Returns:

Function:

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand() is then called with same
seed value, the sequence of random numbers shall be repeated. If rand is called before
any call to srand() have been made, the same sequence shall be generated as when
srand() is first called with a seed value of 1.

Availability:
All Devices

Requires:
#INCLUDE <STDLIB.H>

Examples:

srand (10) ;
I=rand();

See Also:

rand()

591

Built-in Functions

STANDARD STRING FUNCTIONS() memchr() memcmp()
strcat() strchr() stremp() strcoll() strespn()
strerror() stricmp() strien() striwr() strncat()
strncmp() strncpy() strpbrk() strrchr() strspn()
strstr() strxfrm()

Syntax:

ptr=strcat (s1, s2)

Concatenate s2 onto sl

ptr=strchr (s1, c)

Find c in s1 and return &s1]i]

ptr=strrchr (sl, c)

Same but search in reverse

cresult=strcmp (s1, s2)

Compare sl to s2

iresult=strncmp (s1, s2, n)

Compare sl to s2 (n bytes)

iresult=stricmp (s1, s2)

Compare and ignore case

ptr=strncpy (sl, s2, n)

Copy up to n characters s2->s1

iresult=strcspn (s1, s2)

Count of initial chars in s1 not in s2

iresult=strspn (sl, s2)

Count of initial chars in s1 also in s2

iresult=strlen (s1)

Number of characters in sl

ptr=striwr (sl)

Convert string to lower case

ptr=strpbrk (s1, s2)

Search s1 for first char also in s2

ptr=strstr (sl, s2)

Search for s2 in s1

ptr=strncat(s1,s2, n)

Concatenates up to n bytes of s2 onto s1

iresult=strcoll(s1,s2)

Compares sl to s2, both interpreted as appropriate to
the current locale.

res=strxfrm(s1,s2,n)

Transforms maximum of n characters of s2 and places
them in s1, such that strcmp(s1,s2) will give the same
result as strcoll(s1,s2)

iresult=memcmp(m1,m2,n)

Compare m1 to m2 (n bytes)

ptr=memchr(m1,c,n)

Find c in first n characters of m1 and return &m1][i]

ptr=strerror(errnum)

Maps the error number in errnum to an error message
string. The parameters 'errnum’ is an unsigned 8 bit int.
Returns a pointer to the string.

Parameters:

s1 and s2 are pointers to an array of characters (or the name of an array).
Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n - is a count of the maximum number of character to operate on.

C - is a 8 bit character

m1 and m2 are pointers to memory.

592

Built-in Functions

Returns & Functions:

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), O (equal) or 1 (greater than)
res is an integer.

Availability:
All Devices

Requires:
#include <string.h>

Examples:
char stringl[10], string2[10];

stringl,"hi ");

string2, "there");

stringl,string?2);

"Length is %ulr\n", strlen(stringl)); // Will print 8

strcpy
strcpy
strcat
printf

Example Files:
ex_str.c

See Also:

strepy(), strtok()

strcpy() strcopy()

Syntax:
strcpy (dest, src)
strcopy (dest, src)

Parameters:
dest - is a pointer to a RAM array of characters.
src - may be either a pointer to a RAM array of characters or it may be a constant string.

Returns:

Function:
Copies a constant or RAM string to a RAM string. Strings are terminated with a 0.

Availability:
All Devices

593

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Requires:

Examples:

schar string[10], string2[10];

strcpy (string, "Hi There");

strcpy(string2, string) ;

Example Files:
ex_str.c

See Also:

strxxxx()

strtod()

ipcp] Strtof() [pcop strto48()

Syntax:

result=strtod(nptr,& endptr)

ipep] result=strtof(nptr,& endptr)
[pep] result=strtof48(nptr,& endptr

Parameters:
nptr and endptr are strings

Returns:

result is a float.
[PCD]

strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.

Returns the converted value in result, if any. If no conversion could be performed, zero is
returned.

Function:

The strtod function converts the initial portion of the string pointed to by nptr to a float
representation. The part of the string after conversion is stored in the object pointed to
endptr, provided that endptr is not a null pointer. If nptr is empty or does not have the

594

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

expected form, no conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

float result; //PCD devices, replace "float"
with "double"

char str[12]1="123.45hello";

char *ptr;

result=strtod(str, &ptr) ; //result is 123.45 and ptr is
"hello"

See Also:

strtol(), strtoul()

strtok()

Syntax:
ptr = strtok(s1, s2)

Parameters:

s1 and s2 are pointers to an array of characters (or the name of an array).

Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to indicate a
continue operation.

Returns:

ptr points to a character in sl oris 0

Function:
Finds next token in s1 delimited by a character from separator string s2 (which can be
different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained in s2
and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then searches from
there for a character contained in s2.

595

Built-in Functions

If none are found, current token extends to the end of s1, and subsequent searches for a
token will return null.

If one is found, it is overwritten by "\0', which terminates current token. Function saves
pointer to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved pointer.

Availability:
All Devices

Requires:
#INCLUDE <string.h>

Examples:
char string[30], term[3], *ptr;

strcpy (string, "one, two, three;");
strcpy (term,",;");

ptr = strtok(string, term);
while (ptr!=0) {
puts (ptr) ;
ptr = strtok (0, term);
} // Prints: one, two, three

Example Files:
ex_str.c

See Also:
strxxxx(), strepy()

strtol()

Syntax:
result=strtol(nptr,& endptr, base)

Parameters:

nptr and endptr are strings and base is an integer

Returns:

Result is a signed long int.

Returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

596

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Function:

The strtol function converts the initial portion of the string pointed to by nptr to a signed
long int representation in some radix determined by the value of base. The part of the
string after conversion is stored in the object pointed to endptr, provided that endptr is
not a null pointer. If nptr is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by endptr, provided
endptr is not a null pointer.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

signed long result;

char str[9]="123hello";

char *ptr;

result=strtol (str, &ptr,10) ; //result is 123 and ptr is "hello

See Also:

strtod(), strtoul()

strtoul()

Syntax:
result=strtoul(nptr,endptr, base)

Parameters:

nptr and endptr are strings pointers and base is an integer 2-36.

Returns:

Result is a signed long int.

Returns the converted value in result , if any. If no conversion could be performed, zero is
returned.

Function:

The strtoul function converts the initial portion of the string pointed to by nptr to a long
int representation in some radix determined by the value of base. The part of the string
after conversion is stored in the object pointed to endptr, provided that endptr is not a
null pointer. If nptr is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by endptr, provided
endptr is not a null pointer.

597

Built-in Functions

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:

long result;

char str[9]="123hello";

char *ptr;

result=strtoul (str, &ptr, 10); //result is 123 and ptr is "hello

See Also:

strtol(), strtod()

swap()

Syntax:
swap (lvalue)
ircp] result = swap(lvalue)

Parameters:

Ivalue - is a byte variable

Returns:

undefined - WARNING: this function does not return the result
pcp] A byte

Function:
Swaps the upper nibble with the lower nibble of the specified byte. This is the same as:
byte = (byte << 4) | (byte >> 4);

Availability:
All Devices

Requires:

Examples:

x=0x45;
swap (x) ; //x now is 0x54

[PCD]
int x = 0x42;
int result;

598

result =

See Also:

swap (x) ; // result is 0x24;

rotate right(), rotate left()

tolower(

) toupper()

Syntax:

result = tolower (cvalue)
result = toupper (cvalue)

Parameters:
cvalue - is a character

Returns:

An 8 bit character

Function:

These functions change the case of letters in the alphabet.

Built-in Functions

TOLOWER(X) will return 'a'..'z" for X in 'A'.."Z" and all other characters are unchanged.
TOUPPER(X) will return 'A'.."Z" for X in 'a'..'z" and all other characters are unchanged.

Availability:

All Devices

Requires:

Examples:

switch (
case
case
case

}

Example Fi
ex_str.c

toupper (getc()) {

)
'R' : read cmd(); break;
'"W' : write cmd(); break;
'Q' : done=TRUE; break;
les:

touchpad getc()

Syntax:

input = TOUCHPAD_GETC();

599

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
Returns:
char (returns corresponding ASCII number is “input” declared as int)

Function:

Actively waits for firmware to signal that a pre-declared Capacitive Sensing Module
(CSM) or charge time measurement unit (CTMU) pin is active, then stores the pre-
declared character value of that pin in “input”.

Note: Until a CSM or CTMU pin is read by firmware as active, this instruction will cause
the microcontroller to stall.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

Examples:
//When the pad connected to PIN BO is activated, store the letter 'A'

#USE TOUCHPAD (PIN_BO='A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

c = TOUCHPAD GETC() ; //will wait until one of declared pins
is detected
//if PIN BO is pressed, c will get
value 'A'

}

See Also:
#USE TOUCHPAD, touchpad state()

touchpad hit()

Syntax:
value = TOUCHPAD_HIT()

Parameters:

Returns:
TRUE or FALSE

600

Built-in Functions

Function:

Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time Measurement Unit
(CTMU) key has been pressed. If TRUE, then a call to touchpad_getc() will not cause the
program to wait for a key press.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

Examples:
//When the pad connected to PIN BO is activated, store the letter 'A'

#USE TOUCHPAD (PIN BO='A"')
void main (void) {
char c;
enable interrupts (GLOBAL) ;
while (TRUE) {

if (TOUCHPAD HIT()) //wait until key on PIN BO is
pressed
c = TOUCHPAD GETC() ; //get key that was pressed

} //c will get value 'A'

See Also:
#USE TOUCHPAD, touchpad state(), touchpad getc()

touchpad state()

Syntax:
TOUCHPAD_STATE (state);

Parameters:
state - is a literal O, 1, or 2.
Returns:

Function:
Sets the current state of the touchpad connected to the Capacitive Sensing Module
(CSM). The state can be one of the following three values:

0 : Normal state

1: Calibrates, then enters normal state

601

Built-in Functions

2 : Test mode, data from each key is collected in the int1l6 array TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad will not calibrate
properly.

Availability:
Devices with CSM or CTMU Module.

Requires:
#USE TOUCHPAD (options)

Examples:

#USE TOUCHPAD (THRESHOLD=5, PIN D5='5", PIN_BO='C')
void main (void) {

char c;
TOUCHPAD STATE (1) ; //calibrates, then enters normal
state
enable interrupts (GLOBAL) ;
while (1) {
c = TOUCHPAD GETC() ; //will wait until one of declared pins

is detected
} //if PIN BO is pressed, c will get

value 'C'
} //if PIN D5 is pressed, c will get
value '5'

See Also:

#USE TOUCHPAD, touchpad getc(), touchpad hit()

tx buffer available()

Syntax:
value = tx_buffer_available([stream]);

Parameters:

stream — optional parameter specifying the stream defined in #USE RS232.
Returns:

Number of bytes that can still be put into transmit buffer.

Function:

Function to determine the number of bytes that can still be put into transmit buffer before it
overflows. Transmit buffer is implemented has a circular buffer, so be sure to check to make sure
there is room for at least one more then what is actually needed.

602

Built-in Functions

Availability:
All Devices

Requires:
#USE RS232

Examples:

#USE_RS232 (UART1, BAUD=9600, TRANSMIT BUFFER=50)
void main (void) {
unsigned int8 Count = 0;

while (TRUE) {
if (tx _buffer available()>13)
printf ("/r/nCount=%3u", Count++) ;

See Also:
USE RS232(), tx_buffer full(), rcv_buffer bytes(),rcv_buffer full(), get(), putc()
printf(), setup uart(), putc_send()

tx buffer bytes()

Syntax:
value = tx_buffer_bytes([stream]);

Parameters:

stream — optional parameter specifying the stream defined in #USE RS232.
Returns:

Number of bytes in transmit buffer that still need to be sent.

Function:
Function to determine the number of bytes in transmit buffer that still need to be sent.

Availability:
All Devices

Requires:
#USE RS232

Examples:
#USE_RS232 (UART1, BAUD=9600, TRANSMIT BUFFER=50)

603

Built-in Functions

void main (void) {
char string[] = “Hello”;
if (tx buffer bytes() <= 45)
printf (“%s”,string);

See Also:
USE RS232(), tx_buffer full(), rcv_buffer bytes(), rcv_buffer full(), get(), putc()
printf(), setup uart(), putc_send()

tx buffer full()

Syntax:
value = tx_buffer_full([stream])

Parameters:

stream — optional parameter specifying the stream defined in #USE RS232
Returns:

TRUE if transmit buffer is full, FALSE otherwise.

Function:
Function to determine if there is room in transmit buffer for another character.

Availability:
All Devices

Requires:
#USE RS232

Examples:

#USE_RS232 (UART1,BAUD=9600, TRANSMIT BUFFER=50)
void main (void) {

char c;

if (!tx buffer full())

putc(c);

See Also:
USE RS232(), tx_buffer bytes(), rcv_buffer bytes(), rcv_buffer full(), get(), putc()
,printf(), setup uart(), putc_send()

604

Built-in Functions

va arg()

Syntax:
va_arg(argptr, type)

Parameters:
argptr - is a special argument pointer of type va_list

type - This is data type like int or char.

Returns:

The first call to va_arg after va_start return the value of the parameters after that
specified by the last parameter. Successive invocations return the values of the
remaining arguments in succession.

Function:
The function will return the next argument every time it is called.

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h>

Examples:

int foo(int num, ...)

{

int sum = 0;

int 1i;

va_ list argptr; // create special argument
pointer

va_start (argptr,num) ; // initialize argptr

for (1i=0; i<num; i++)

sum = sum + va_arg(argptr, int);
va_end (argptr) ; // end variable processing
return sum;

}

See Also:
nargs(), va_end(), va_start()

va_end()

Syntax:
va_end(argptr)

605

Built-in Functions

Parameters:
argptr - is a special argument pointer of type va_list
Returns:

Function:
A call to the macro will end variable processing. This will facillitate a normal return from
the function whose variable argument list was referred to by the expansion of va_start().

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h

Examples:

int foo(int num, ...)

{

int sum = 0;

int 1i;

va_list argptr; // create special argument pointer
va_start (argptr,num) ; // initialize argptr

for (1i=0; i<num; i++)

sum = sum + va_arg(argptr, int);
va_end (argptr) ; // end variable processing
return sum;

}

See Also:
nargs(), va_start(), va_arg()

va_ start()

Syntax:
va_start(argptr, variable)

Parameters:
argptr - is a special argument pointer of type va_list

variable — The second parameter to va_start() is the name of the last parameter before
the variable-argument list.
Returns:

606

Built-in Functions

Function:
The function will initialize the argptr using a call to the macro va_start().

Availability:
All Devices

Requires:
#INCLUDE <stdarg.h

Examples:

int foo(int num, ...)

{

int sum = 0;

int 1i;

va_list argptr; // create special argument
pointer

va_start (argptr,num); // initialize argptr

for (1i=0; i<num; i++)

sum = sum + va arg(argptr, int) ;
va_end (argptr) ; // end variable processing
return sum;

}

See Also:
nargs(), va_start(), va_arg()

verify slave program()

Syntax:
result = verify_slave_program(address, instructions);

Parameters:
address - The address in the Master's program memory that the Slave program is stored
at. Because of how the data is stored and written the address must be a multiple of 4.

Instructions - The number of instructions to copy from the Master's Flash to the Slave's
PRAM, because of how the data is written the number of instructions must be a multiple
of 2.

Returns:

An int16 value indicating the number of errors, mis-matched instruction pairs, it found. If
the return value is 0, then program loaded in the Slave's PRAM matches what is in the
Master's Flash, i.e. the Slave program was verified.

607

Built-in Functions

Function:
Verify that the program loaded into the Slave's PRAM matched what is stored in the
Master's Flash.

Availability:
Only available on Dual Core devices.

Requires:

Examples:
Result = verify slave program(0x10000, 512);
if (Result ==0)
setup msi (MSI SLAVE ENABLED) ;

See Also:
load slave program()

write bank()

Syntax:
write_bank (bank, offset, value)

Parameters:
bank - is the physical RAM bank 1-3 (depending on the device)

offset - is the offset into user RAM for that bank (starts at 0)

value - is the 8 bit data to write
Returns:

Function:

Write a data byte to the user RAM area of the specified memory bank. This function may
be used on some devices where full RAM access by auto variables is not efficient. For
example on the PIC16C57 chip setting the pointer size to 5 bits will generate the most
efficient ROM code however auto variables can not be above 1Fh. Instead of going to 8
bit pointers you can save ROM by using this function to write to the hard to reach banks.
In this case the bank may be 1-3 and the offset may be 0-15.

Availability:

All devices but only useful on PCB parts with memory over 1Fh and PCM parts with
memory over FFh.

608

Built-in Functions

Requires:

Examples:

i=0; // Uses bank 1 as a RS232 buffer
do {

c=getc();

write bank(1l,i++,c);
} while (c!=0x13);

Example Files:
ex_psp.c

write configuration memory()

Syntax:
write_configuration_memory ([offset], dataptr,count)

Parameters:
dataptr - pointer to one or more bytes

count -: a 8 bit integer
offset - is an optional parameter specifying the offset into configuration memory to start
writing to, offset defaults to zero if not used.

Returns:

Function:
Erases all fuses and writes count bytes from the dataptr to the configuration memory.
For Enhanced16 devices - erases and write User ID memory.

Availability:
All PIC18 Flash and Enhanced16 devices
All PIC24 Flash devices

Requires:

Examples:

int datal[6];
write configuration memory(data, 6

609

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

See Also:
WRITE _PROGRAM MEMORY(), Configuration Memory Overview

write eeprom()

Syntax:
write_eeprom (address, value)
[pcp] Write_eeprom (address , pointer , N)

Parameters:
address - is a (8 bit or 16 bit depending on the part) int, the range is device dependent

value - is an 8 hit int

pcp] address - is the 0 based starting location of the EEPROM write
ireo] N - specifies the number of EEPROM bytes to write

[rcp] Value - is a constant or variable to write to EEPROM

[Pcp] pointer - is a pointer to location to data to be written to EEPROM

Returns:

Function:

Write a byte to the specified data EEPROM address. This function may take several
milliseconds to execute. This works only on devices with EEPROM built into the core of
the device.

For devices with external EEPROM or with a separate EEPROM in the same package
(like the 12CE671) see EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

iecp] This function will write the specified value to the given address of EEPROM. If
pointers are used than the function will write n bytes of data from the pointer to EEPROM
starting at the value of address.

In order to allow interrupts to occur while using the write operation, use the #DEVICE
option WRITE_EEPROM = NOINT. This will allow interrupts to occur while the
write_eeprom() operations is polling the done bit to check if the write operations has
completed. Can be used as long as no EEPROM operations are performed during an
ISR.

610

Built-in Functions

Availability:
Devices with supporting hardware on chip.

Requires:

Examples:
#define LAST VOLUME 10 // Location in EEPROM

volume+t+;
write_eeprom(LAST_VOLUME,volume);

Example Files:
ex_intee.c, ex_extee.c, ce51x.c, ceb62x.c, ceb67x.c

See Also:
read _eeprom(), erase _eeprom(), Data EEPROM Overview

write external memory()

Syntax:
write_external_memory(address, dataptr, count)

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts

dataptr - is a pointer to one or more bytes
count - is a 8 bit integer

Returns:

Function:

Writes count bytes to program memory from dataptr to address. Unlike
write_program_eeprom() and read_program_eeprom() this function does not use any
special EEPROM/FLASH write algorithm. The data is simply copied from register address
space to program memory address space. This is useful for external RAM or to
implement an algorithm for external flash.

Availability:
PI1C18 Devices Only

611

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink4.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink5.Click()

Built-in Functions

Requires:

Examples:

for (1=0x1000; i<=0x1fff;i++) {
value=read adc();
write external memory (i, value, 2);
delay ms (1000);

}

Example Files:
ex_load.c, loader.c

See Also:
write _program_eeprom(), erase program eeprom(), Program Eeprom Overview

write extended ram()

Syntax:
write_extended_ram (page,address,data,count);

Parameters:
page — the page in extended RAM to write to

address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)

Returns:

Function:
Write data to the extended RAM of the microcontroller.

Availability:
Devices with more then 30K of RAM.

Requires:

Examples:

612

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

unsigned int8 data[8] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1,0x0000,data,8);

See Also:
read extended ram(), Extended RAM Overview

write program eeprom()

Syntax:
write_program_eeprom (address, data)

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts, data is 16 bits. The least
significant bit should always be 0 in PCH.

Returns:

Function:
Writes to the specified program EEPROM area.

See write_program_memory() for more information on this function.

Availability:
Devices that allow writes to program memory.
Requires:
Examples:
write program eeprom(0,0x2800) ; //disables program

Example Files:
ex_load.c, loader.c

See Also:
read program_eeprom(), read eeprom(), write _eeprom(), write_program_memory(),
erase_program_eeprom(), Program Eeprom Overview

613

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

write program memory()

Syntax:
write_program_memory(address, dataptr, count);

Parameters:
address - is 16 bits on PCM parts and 32 bits on PCH parts
pcp] address - is 32 bits

dataptr - is a pointer to one or more bytes

count - is a 8 bit integer on PIC16 and 16-bit for PIC18
[Pcp] count - is a 16 bit integer

Returns:

Function:
Writes count bytes to program memory from dataptr to address. This function is most
effective when count is a multiple of FLASH_WRITE_SIZE. Whenever this function is
about to write to a location that is a multiple of FLASH_ERASE_SIZE then an erase is
performed on the whole block.
NOTES:Clarification about the functions to write to program memory:
In order to get the desired results while using write_program_memory(), the block of
memory being written to needs to first be read in order to save any other variables
currently stored there, then erased to clear all values in the block before the new
values can be written. This is because the write_program_memory() function does
not save any values in memory and will only erase the block if the first location is
written to. If this process is not followed, when new values are written to the block,
they will appear as garbage values.

For chips where getenv(“FLASH_ERASE_SIZE”) > getenv(‘FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, does not erase (use
erase_program_eeprom())

write_program_memory() - Writes any number of bytes, will erase a block
whenever the first (lowest) byte in a block is written to. If the first address is not the
start of a block that block is not erased.

erase_program_eeprom() - Will erase a block. The lowest address bits are not
used.

For chips where getenv(“FLASH_ERASE_SIZE”) =
getenv(“FLASH_WRITE_SIZE”)

614

Built-in Functions

write_program_eeprom() - Writes 2 bytes, no erase is needed.

write_program_memory() - Writes any number of bytes, bytes outside the range of
the write block are not changed. No erase is needed.

erase_program_eeprom() - Not available

irep] Writes count bytes to program memory from dataptr to address. This function is most
effective when count is a multiple of FLASH_WRITE_SIZE, but count needs to be a
multiple of MIN_FLASH_WRITE. Whenever this function is about to write to a location
that is a multiple of FLASH_ERASE_SIZE then an erase is performed on the whole
block. Due to the 24 bit instruction length on PCD parts, every fourth byte of data is
ignored. Fill the ignored bytes with 0x00.

See Program EEPROM Overview for more information on program memory access

Availability:
Devices that allow writes to program memory.

Requires:

Examples:

wfor (i=0x1000;i<=0x1fff;i++) {
value=read adc();
write program memory (i, value, 2);
delay ms (1000) ;

}

[PCD]

for (1=0x1000; i<=0x1fff;i++) {
value=read adc();
write program memory (i, &value, 4);
delay ms (1000);

int8 write data[4] = {0x10,0x20,0x30,0x00};
write program memory (0x2000, write data, 4);

Example Files:
loader.c

See Also:
write _program_eepro, erase _program _eeprom, Program Eeprom Overview

615

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

write program memory8()

Syntax:
write. PROGRAM_MEMORYS8 (address, dataptr, count);

Parameters:
address is 16 bits to start writing data to the program memory.

dataptr is a pointer to an array of bytes containing data to write to program memory.
count is the number of bytes to write to program memory.

Returns:
Undefined

Function:

Write count bytes to program memory. This function only writes the least significant byte
to each address in program memory. See write program memory() for a function that
can write all the data to each address in program memory.

Availability:
Only on PCM devices with the ability to Read program memory.

Requires:

Examples:
write program memory8 (Address, Data, 128);
See Also:

read program_memory(), write program memory(), read program_memory8(),
Program Eeprom Overview

zcd status()

Syntax:
value=zcd_status()

Parameters:

Returns:
value - the status of the ZCD module. The following defines are made in the device's
header file and are as follows:

ZCD_IS_SINKING

616

Built-in Functions

ZCD_IS_SOURCING

Function:

Determine if the Zero-Cross Detection (ZCD) module is currently sinking or sourcing
current.

If the ZCD module is setup to have the output polarity inverted, the value return will be
reversed.

Availability:
All devices with a ZCD module.

Requires:

Examples:

value=zcd status():

See Also:

setup_zcd()

617

Standard C Include Files

STANDARD C INCLUDE FILES

errno.h

EDOM Domain error value

ERANGE Range error value

errno error value

float.n

FLT RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number with

g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating-point number.

FLT_MIN_10_EXP: Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

FLT_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

FLT_MAX_10_EXP: Maximum negative integer such that 10 raised to that power is in the
range representable finite floating-point numbers.

FLT_MAX: Maximum representable finite floating point number.

FLT _EPSILON: The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

FLT_MIN: Minimum normalized positive floating point number

DBL_MANT_DIG: Number of base digits in the floating point significant
irep] double significant

DBL_DIG: Number of decimal digits, g, such that any floating point number or
irep) double number with g decimal digits can be rounded into a
floating point number or jpco; double number with p radix b digits and
back again without change to the g decimal digits.

DBL_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating point number or (pco; double
number.

DBL_MIN_10_EXP: Minimum negative integer such that 10 raised to that power is in the
range of normalized floating point number or (rcoj double number.

DBL_MAX_EXP: Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating point number or [pcp)
double number.

618

DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:

LDBL_MANT DIG:

LDBL_DIG:

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:
LDBL_MAX_EXP:

LDBL_MAX_10_EXP:Maximum negative integer such that 10 raised to that power is in the

LDBL_MAX:

LDBL_EPSILON:

Standard C Include Files

Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating point number or pco) double
number.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number or [pep; double
number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.
Minimum negative integer such that FLT RADIX raised to that power
minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.

range of representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int

619

Standard C Include Files

|[ULONG_MAX: Maximum value for an object of type unsigned long int |
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp

longjmp: Jumps to the last marked point

stddef.h

ptrdiff_t: The basic type of a pointer

size_t: The type of the sizeof operator (int)

wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE
RS232)

stdout The standard output stream (USE RS232 specified as stream last USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h

div_t structure type that contains two signed integers (quot
and rem).

Idiv_t structure type that contains two signed longs (quot
and rem

EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

620

Standard C Include Files

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

Multibyte character and string functions:Multibyte characters not supported
MBLEN() Returns the length of the string.
MBTOWC() Returns 1.

\WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.
\WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

621

Software License Agreement

SOFTWARE LICENSE AGREEMENT

Carefully read this Agreement prior to opening this package. By opening this package, you
agree to abide by the following provisions.

If you choose not to accept these provisions, promptly return the unopened package for a
refund.

All materials supplied herein are owned by Custom Computer Services, Inc. (‘CCS”) and is protected by
copyright law and international copyright treaty. Software shall include, but not limited to, associated media,
printed materials, and electronic documentation.

These license terms are an agreement between You (“Licensee”) and CCS for use of the Software
(“Software”). By installation, copy, download, or otherwise use of the Software, you agree to be bound by all
the provisions of this License Agreement.

1.

LICENSE - CCS grants Licensee a license to use in one of the two following options:

1) Software may be used solely by single-user on multiple computer systems;

2) Software may be installed on single-computer system for use by multiple users. Use of Software by
additional users or on a network requires payment of additional fees.

Licensee may transfer the Software and license to a third party; and such third party will be held to the
terms of this Agreement. All copies of Software must be transferred to the third party or destroyed.
Written notification must be sent to CCS for the transfer to be valid.

APPLICATIONS SOFTWARE - Use of this Software and derivative programs created by Licensee shall
be identified as Applications Software, are not subject to this Agreement. Royalties are not be associated
with derivative programs.

WARRANTY - CCS warrants the media to be free from defects in material and workmanship, and that the
Software will substantially conform to the related documentation for a period of thirty (30) days after the
date of purchase. CCS does not warrant that the Software will be free from error or will meet your specific
requirements. If a breach in warranty has occurred, CCS will refund the purchase price or substitution of
Software without the defect.

LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES — CCS and its suppliers disclaim any
expressed warranties (other than the warranty contained in Section 3 herein), all implied warranties,
including, but not limited to, the implied warranties of merchantability, of satisfactory quality, and of fitness
for a particular purpose, regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any incidental, special, indirect or
consequential damages whatsoever, including, without limitation, damages for loss of profits, loss of data,
business interruption, or any other commercial damages or losses, arising out of or related to your use or
inability to use the Software.

Licensee is responsible for determining whether Software is suitable for Applications.
©1994-2019 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE

PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

622

